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ABSTRACT 

 

The understanding of long-term land use and land cover (LULC) dynamics is essential for effective 

environmental management and sustainable urban planning. This study investigates spatio-temporal LULC 

changes within the study area over a 38-year period using multi-temporal Landsat satellite imagery acquired 

for 1986, 2013, 2019, and 2024. Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, and Landsat 9 OLI-2 

surface reflectance datasets were processed within the Google Earth Engine platform. Image pre-processing 

involved cloud and shadow masking, temporal filtering, and generation of median composites to ensure 

radiometric consistency and minimize noise. To improve class separability, key spectral indices, Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), Modified Normalized 

Difference Water Index (MNDWI), and Bare Soil Index (BSI), were derived and integrated with Landsat 

spectral bands. Land cover classification was performed using the Random Forest machine learning 

algorithm, with four major classes identified: water, built-up areas, vegetation, and bare soil. Classification 

accuracy was evaluated using independent validation samples and standard accuracy metrics. The results 

indicate high classification performance, with overall accuracies of 93.33% (κ = 0.89) for 1986, 85.00% (κ 

= 0.79) for 2013, 87.50% (κ = 0.83) for 2019, and 82.76% (κ = 0.76) for 2024. Change detection analysis 

revealed substantial expansion of built-up areas, a decline and subsequent recovery of vegetation cover, 

increasing water bodies, and dynamic transitions in bare soil areas. These findings demonstrate the 

effectiveness of integrating spectral indices and machine learning for long-term LULC monitoring and 

provide valuable insights for land management and urban development planning. 

  

Keywords: Land Use/Land Cover Change; Remote Sensing; Random Forest Classification; Google Earth 

Engine; Landsat Imagery  

 

1.0. Introduction 

Globally, many countries are experiencing rapid and persistent changes in land use and land cover 

(LULC), driven largely by the complex interactions between human activities and natural 

environmental processes. These changes have become one of the most significant indicators of 

anthropogenic pressure on the Earth’s surface and are increasingly recognized as a critical 

component of global environmental change. Understanding the nature, magnitude, drivers, and 

consequences of LULC change is therefore essential for informed decision-making and sustainable 

development planning (Gondwe et al., 2021). 

 

Land cover refers to the observable physical and biophysical characteristics of the Earth’s surface, 

including vegetation, water bodies, soil, and built-up features, whereas land use describes how 

humans utilize land for social, economic, political, or cultural purposes (Verburg et al., 2015). Land 
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change occurs when these characteristics are modified, either through conversion from one land 

cover or land use type to another or through intensification of existing land use practices. Such 

changes are predominantly induced by anthropogenic activities, although natural factors such as 

climate variability and geomorphological processes also contribute to land surface transformations 

(Dadson, 2016; Liping et al., 2018). 

 

Human-driven activities including agriculture, mining, overgrazing, residential and industrial 

expansion, and infrastructure development have accelerated land use transitions, particularly in 

rapidly developing regions. Population growth and increasing demand for food, energy, and raw 

materials further intensify the exploitation of natural resources, often leading to environmental 

degradation (Liping et al., 2018). These transformations have far-reaching environmental 

consequences, including deforestation, biodiversity loss, soil degradation, disruption of hydrological 

systems, food insecurity, and increased emissions of carbon dioxide and other greenhouse gases, 

thereby exacerbating global climate change (Cobbinah et al., 2015; Clerici et al., 2019; Hu et al., 

2019). 

 

Urbanization remains a dominant driver of LULC change worldwide. According to the United 

Nations, more than 50% of the global population resided in urban areas as of 2014, a proportion that 

continues to rise. This rapid urban growth inevitably results in the conversion of natural and 

agricultural lands into built-up areas, altering ecosystem functions and landscape structure. 

Concurrently, economic development increases pressure on land resources as societies seek to meet 

growing energy and food demands (Abass et al., 2018). 

 

Comprehensive knowledge of LULC dynamics is therefore indispensable for stakeholders such as 

urban planners, environmental protection agencies, and local authorities. Accurate and timely 

information on land use and land cover changes supports effective natural resource management, 

environmental monitoring, and spatial planning, while also enabling the assessment and prediction 

of human-induced environmental changes. Such insights are crucial for balancing development 

needs with environmental conservation and for achieving sustainable development goals that 

safeguard resources for future generations (Kumasi et al., 2010; Kamwi et al., 2015; Gondwe et al., 

2021). 

 

2.0. Methodology 

 

2.1. Study Area 

The study was conducted in Mbatyu Council Ward, located in Mbayion District, Gboko Local 

Government Area (LGA), Benue State, Nigeria, where the Dangote Cement Factory is located as 

indicated by Figure 1. The area is geographically positioned between latitudes 7°24'N and 7°25'N 

and longitudes 8°57'E and 8°59'E of the Greenwich Meridian. Gboko is a major center of limestone 

mining and is home to Dangote Cement, one of the largest cement producers in Nigeria. 

 

The region experiences a tropical climate characterized by two main seasons: the wet season (April 

to October) and the dry season (November to March). The average annual rainfall ranges between 

1200mm and 1800mm, with higher precipitation during the wet season, while the dry season is 

marked by the harmattan winds, which lower humidity levels significantly. 
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The natural vegetation consists predominantly of savannah grassland interspersed with patches of 

woodland, but large portions of this have been cleared due to farming and industrial activities, 

particularly limestone mining. Geologically, the area lies within the Benue Trough, a rich 

sedimentary basin with large deposits of limestone, which is primarily exploited for cement 

production. Mbatyu is surrounded by other wards like Mbatan, Mba Avarakaa, Mbatser, Ukpekpe, 

and Gboko Central, which are integral parts of the socio-economic and land use context of the region. 

 

 
 

Figure 1: Map of Benue State showing the Study areas 
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2.2 Data Sources and Image Pre-processing 

Multi-temporal satellite imagery was employed to investigate land use and land cover (LULC) 

dynamics within the study area for four representative epochs: 1986, 2013, 2019, and 2024. Landsat 

imagery was selected due to its long temporal coverage, consistent spatial resolution, and proven 

suitability for long-term environmental monitoring and change detection studies. 

Landsat 5 Thematic Mapper (TM) imagery was used for 1986, Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) for 2013, Landsat 8 Operational Land Imager (OLI) for 2019, and Landsat 9 

Operational Land Imager–2 (OLI-2) for 2024. All datasets were sourced from the United States 

Geological Survey (USGS) Landsat Collection 2 Level-2 Surface Reflectance archive and processed 

within the Google Earth Engine (GEE) cloud-computing environment. The Level-2 products were 

selected because they are radiometrically calibrated and atmospherically corrected, thereby ensuring 

consistency and reliability for quantitative analysis across multiple time periods. 

To reduce the influence of cloud contamination and atmospheric artefacts, image collections for 

each year were filtered based on acquisition date and cloud cover percentage. Cloud and cloud 

shadow pixels were identified and removed using the quality assurance (QA) bands accompanying 

the surface reflectance products. For each epoch, a median composite image was generated from the 

filtered image collection to represent typical surface conditions while minimizing residual noise, 

outliers, and seasonal variability. 

All composite images were spatially clipped to the study area boundary to maintain uniform spatial 

extent across all years. The native Landsat spatial resolution of 30 m was preserved throughout the 

analysis, enabling direct inter-annual comparison of LULC patterns. Although Sentinel-2 surface 

reflectance imagery was available for 2024, it was not incorporated into the classification process. 

Instead, it was used as a high-resolution reference dataset to support training sample selection and 

improve visual interpretation of land cover classes. 

2.3 Spectral Index Derivation 

To enhance class separability and improve classification performance, a set of spectral indices was 

derived from the Landsat surface reflectance imagery for each study year. These indices were 

selected based on their established effectiveness in discriminating vegetation, built-up areas, water 

bodies, and bare soil, which constitute the dominant land cover types within the study area. Prior to 

index computation, Landsat Level-2 surface reflectance bands were radiometrically scaled using the 

standard scale factors provided by the data producer to ensure physical consistency of reflectance 

values. 

2.4 Normalized Difference Vegetation Index (NDVI) 

Vegetation characteristics were quantified using the Normalized Difference Vegetation Index 

(NDVI), which exploits the contrast between strong near-infrared reflectance and red-band 

absorption by healthy vegetation. NDVI is defined as shown by equation 1: 
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For Landsat imagery, the near-infrared and red bands correspond to Band 5 (SR_B5) and Band 4 

(SR_B4), respectively. Higher NDVI values indicate dense and healthy vegetation, whereas low or 

negative values are associated with non-vegetated surfaces such as built-up areas, bare soil, and 

water bodies. 

2.5 Normalized Difference Built-up Index (NDBI) 

Built-up and impervious surfaces were enhanced using the Normalized Difference Built-up Index 

(NDBI), which leverages the higher reflectance of urban materials in the shortwave infrared (SWIR) 

region relative to the near-infrared region. The NDBI is expressed as shown in equation 2: 

SWIR NIR
NDBI

SWIR NIR

−
=

+
          (2) 

In this study, SWIR corresponds to Band 6 (SR_B6) and NIR to Band 5 (SR_B5). Positive NDBI 

values generally indicate built-up areas, while negative values are characteristic of vegetated and 

water-covered surfaces. 

2.6 Modified Normalized Difference Water Index (MNDWI) 

Surface water features were delineated using the Modified Normalized Difference Water Index 

(MNDWI), which improves water detection by suppressing noise from vegetation and built-up 

areas. The index is computed using equation 3: 

Green SWIR
MNDWI

Green SWIR

−
=

+
         (3) 

For Landsat imagery, the green band corresponds to Band 3 (SR_B3), while the SWIR band 

corresponds to Band 6 (SR_B6). Water bodies typically exhibit positive MNDWI values, whereas 

non-water features yield negative responses. 

2.7 Bare Soil Index (BSI) 

Exposed soil and sparsely vegetated surfaces were identified using the Bare Soil Index (BSI), which 

integrates information from the blue, red, near-infrared, and shortwave infrared bands. The BSI is 

defined using equation 4: 

( Re ) ( l )

( Re ) ( l )

SWIR d NIR B ue
NDBI

SWIR d NIR B ue

+ − +
=

+ + +
       (4) 

In this formulation, the blue, red, near-infrared, and SWIR bands correspond to SR_B2, SR_B4, 

SR_B5, and SR_B6, respectively. Higher BSI values indicate bare or exposed soil surfaces, while 

lower values correspond to vegetated or water-covered areas. 
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2.8 Integration of Spectral Indices 

The computed NDVI, NDBI, MNDWI, and BSI layers were appended to the original Landsat 

spectral bands and jointly used during training sample selection and image classification. The 

integration of these indices enhanced spectral discrimination among land cover classes by capturing 

their distinct biophysical characteristics, thereby improving classification robustness and accuracy. 

2.9 Training Sample Selection and Random Forest Classification 

Land use and land cover classification was performed using the Random Forest (RF) machine 

learning algorithm implemented within the Google Earth Engine platform. RF was selected due to 

its high classification accuracy, robustness to noise, and ability to handle multicollinearity among 

input variables. Four major LULC classes were defined: water, built-up areas, vegetation, and bare 

soil. 

Training samples for each class were carefully selected through a combination of spectral index 

thresholding and visual interpretation of high-resolution imagery. Sentinel-2 imagery was employed 

as an auxiliary reference for more accurate sample identification, particularly for the 2019 and 2024 

datasets. All samples were merged into a single feature collection and randomly partitioned into 

training and testing subsets, with approximately 70% of the samples used for model training and the 

remaining 30% reserved for independent validation. 

The RF classifier was trained using Landsat optical bands (SR_B1 to SR_B6) together with the 

derived spectral indices (NDVI, NDBI, MNDWI, and BSI) as input features. The number of decision 

trees was varied during model development, and classifier performance was evaluated iteratively to 

determine optimal model parameters. Once trained, the classifier was applied to the full spatial extent 

of the study area to generate LULC maps for each reference year. 

2.10 Accuracy Assessment 

Classification accuracy was assessed using the independent testing subset of samples. An error 

(confusion) matrix was generated for each classified map, from which standard accuracy metrics 

were derived. Overall accuracy (OA) was computed as the proportion of correctly classified pixels 

relative to the total number of validation pixels, while the Kappa coefficient (κ) was used to quantify 

the level of agreement between the classified maps and reference data beyond chance. Producer’s 

accuracy (PA), which reflects omission errors, was calculated as the ratio of correctly classified 

pixels in a given class to the total number of reference pixels for that class using equation 5: 

         

       

Correctlyclassified pixels inaclass

Total reference pixels inthat class
PA =        (5) 

 

 In the same manner, the User’s accuracy (UA) which indicates commission errors, was computed 

as the ratio of correctly classified pixels in a class to the total number of pixels classified into that 

class was calculated using equation 6: 
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Correctlyclassified pixels inaclass

Total reference pixels asthat class
UA =        (6) 

 

3.0 Results and Discussion 
 

3.1 Classification Accuracy and Model Performance 

Table 1: The classification accuracy for each year 
 

Year Samples (n) Training Testing Overall Accuracy Kappa 

1986 60 45 15 93.33% 0.89 

2013 87 67 20 85.00% 0.79 

2019 146 106 40 87.50% 0.83 

2024 89 60 29 82.76% 0.76 

 

The Random Forest (RF) classifier presented in Table 1 demonstrated good performance in mapping 

land use and land cover (LULC) across all four study epochs (1986, 2013, 2019, and 2024). Overall 

classification accuracies ranged from 82.76% to 93.33%, with corresponding Kappa coefficients 

between 0.76 and 0.89, indicating substantial to almost perfect agreement between classified outputs 

and reference data. The highest accuracy was recorded for 1986 (OA = 93.33%, κ = 0.89), while the 

lowest occurred in 2024 (OA = 82.76%, κ = 0.76). These values are consistent with previous LULC 

studies employing Random Forest classifiers, which commonly report overall accuracies above 80% 

when multi-spectral Landsat data and spectral indices are integrated (Kumasi et al., 2010; Kamwi et 

al., 2015; Gondwe et al., 2021). 

 

The marginal reduction in classification accuracy observed in the more recent datasets can be 

attributed to increasing landscape complexity and spectral heterogeneity caused by rapid urban 

expansion and mixed land cover patterns. Similar declines in classification accuracy for recent 

periods have been reported in urbanizing environments, where spectral confusion between built-up 

areas, bare soil, and sparsely vegetated surfaces is more pronounced (Clerici et al., 2019; Hu et al., 

2019). Nevertheless, the achieved accuracy levels confirm the suitability of the RF algorithm and 

the derived spectral indices for reliable multi-temporal LULC mapping. 

 

3.2 Spatio-Temporal Patterns of Land Use and Land Cover Change 

Figure 2 to Figure 4 represent the spatial distribution and temporal evolution of LULC classes reveal 

significant land transformation over the 38-year study period. In 1986, the landscape was dominated 

by vegetation (4.19 km²) and bare soil (4.65 km²), with built-up areas occupying a relatively small 

proportion (0.33 km²) and no detectable surface water. This land cover configuration is typical of 

less urbanized landscapes, as reported in earlier studies across developing regions (Dadson, 2016; 

Liping et al., 2018). 

 

By 2013, built-up areas expanded markedly to 1.34 km², reflecting intensified urbanization and 

infrastructural development. This expansion coincided with a substantial reduction in vegetation 

cover to 2.37 km² and an increase in bare soil to 5.28 km², suggesting widespread land clearing and 

transitional land states associated with construction activities. Comparable patterns of vegetation 

loss and bare land expansion during early phases of urban growth have been widely documented in 

rapidly developing cities (Cobbinah et al., 2015; Abass et al., 2018). 
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Between 2013 and 2019, built-up land continued to increase, reaching 1.88 km², while vegetation 

cover exhibited partial recovery to 3.36 km². This trend persisted into 2024, with built-up areas 

expanding further to 2.01 km² and vegetation increasing to 3.74 km². The observed vegetation 

recovery may be attributed to land management practices, re-vegetation initiatives, or natural 

regeneration following earlier disturbances. Similar post-urbanization vegetation recovery trends 

have been reported in studies where urban expansion stabilizes or where green infrastructure policies 

are implemented (Kamwi et al., 2015; Clerici et al., 2019). 
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Figure 2: LULC map for 1986 
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Figure 4.2: LULC map for 2013 
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Figure 3: LULC map for 2019 
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Figure 5: LULC map for 2024 
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3.3 Dynamics of Water Bodies and Bare Soil 

Table 2 presented the summary of LULC analysis. Surface water exhibited a gradual increase from 

0.18 km² in 2013 to 0.36 km² in 2024. This increase may reflect changes in hydrological conditions, 

improved sensor sensitivity, or the creation of artificial water bodies associated with urban 

development. Previous studies have similarly noted apparent increases in mapped water bodies in 

recent Landsat-based analyses, often linked to enhanced radiometric quality of newer sensors and 

improved water indices such as MNDWI (Hu et al., 2019). 

 

Bare soil showed a contrasting trend, increasing sharply from 4.65 km² in 1986 to 5.28 km² in 2013, 

followed by a consistent decline to 3.07 km² in 2024. This pattern suggests that bare soil largely 

represents transitional land cover, which is eventually converted into built-up areas or vegetated 

surfaces. Such dynamics are characteristic of rapidly transforming landscapes and have been widely 

reported in LULC change studies focusing on urban growth corridors (Liping et al., 2018; Gondwe 

et al., 2021). 

 

The results highlight urban expansion as the dominant driver of land transformation within the study 

area, with consequential impacts on vegetation, bare soil, and surface water dynamics. The findings 

reinforce the importance of integrating multi-temporal remote sensing data and machine learning 

techniques for monitoring long-term LULC changes and provide valuable insights for sustainable 

land use planning, environmental management, and policy formulation. 

Table 2: Total area for each class in each year. 
 

Year Water (km²) Built-Up (km²) Vegetation (km²) Bare Soil (km²) 

1986 0 0.3332 4.1930 4.6467 

2013 0.1754 1.3416 2.3748 5.2812 

2019 0.2605 1.8847 3.3619 3.6658 

2024 0.3615 2.0070 3.7393 3.0650 

 

4.0 Conclusions 

This study assessed long-term land use and land cover (LULC) dynamics within the study area over a 38-

year period using multi-temporal Landsat imagery and a Random Forest (RF) machine learning approach 

implemented in the Google Earth Engine environment. By integrating spectral indices, NDVI, NDBI, 

MNDWI, and BSI, with Landsat surface reflectance data, the study achieved reliable discrimination of major 

land cover classes, including water bodies, built-up areas, vegetation, and bare soil. 

 

The classification results demonstrated strong model performance, with overall accuracies exceeding 82% 

across all study years and Kappa coefficients indicating substantial to near-perfect agreement. These results 

confirm the robustness of the RF classifier and the suitability of Landsat data for multi-decadal LULC 

analysis, even in landscapes experiencing increasing heterogeneity due to urban growth. 

 

The change detection analysis revealed pronounced expansion of built-up areas over time, reflecting sustained 

urbanization and infrastructure development. This expansion was accompanied by notable reductions in 

vegetation and increases in bare soil during earlier periods, followed by partial vegetation recovery and a 

decline in bare soil in more recent years. The gradual increase in surface water extent further highlights the 

dynamic nature of the landscape and potential changes in hydrological conditions or land management 

practices. 
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The findings underscore the value of integrating remote sensing, spectral indices, and machine learning 

techniques for monitoring spatio-temporal land transformations. The generated LULC maps and observed 

trends provide valuable information for urban planners, environmental managers, and policy-makers, 

supporting evidence-based decision-making aimed at sustainable land use planning, environmental 

conservation, and long-term resource management. 
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