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ABSTRACT 

 

Groundwater contamination arising from hydrocarbon exploitation and related human activities has 

become a major environmental concern in Otorogu, Delta State. Understanding the key hydrochemical 

factors that influence groundwater quality is essential for sustainable water resource management. This 

study therefore aimed to identify the dominant hydrochemical and trace-metal factors influencing 

groundwater quality and to assess the extent of hydrocarbon-related pollution in the area using Principal 

Component Analysis (PCA). A total of 100 groundwater samples were collected from domestic boreholes; 

50 during the wet season and 50 during the dry season. Thirty-one (31) physico-chemical and 

microbiological parameters were analyzed following standard laboratory protocols, and all measurements 

were performed in triplicate to ensure data reliability. Prior to PCA, data were standardized (z-score 

transformation) to minimize scale bias, and sample adequacy was confirmed using the Kaiser-Meyer-Olkin 

(KMO) test (0.849) and Bartlett’s test of sphericity (p < 0.001). PCA extraction was based on eigenvalues 

greater than one and varimax rotation to enhance component interpretability. The PCA results showed that 

the first principal component (PC1), explaining 36.3% of the total variance, was dominated by ionic and 

nutrient variables (NO₃⁻, Cl⁻, TDS, EC), indicating influences from salinization and agricultural runoff. The 

second and third components were characterized by heavy metals (Pb, Cu, Ni, Zn) and microbial indicators, 

respectively, reflecting anthropogenic and localized hydrocarbon impacts. Overall, the study revealed that 

groundwater chemistry in Otorogu is primarily controlled by anthropogenic inputs, while hydrocarbon 

influence is moderate but spatially localized. Continuous seasonal monitoring and effective pollution control 

measures are therefore recommended to safeguard groundwater quality and ensure aquifer sustainability in 

hydrocarbon-impacted environments. 

  

Keywords: Groundwater quality, Principal Component Analysis, Hydrocarbon pollution, Heavy metals, 

Niger Delta, Multivariate analysis. 

 

 
1.0. Introduction 

Groundwater remains an indispensable source of potable, agricultural, and industrial water; however, in 

hydrocarbon-producing regions such as the Niger Delta, its quality is increasingly jeopardized by petroleum-

related contamination (Oyebamiji et al., 2024; Ikenna and Chukwudozie, 2024). Hydrocarbon leakage from 

exploration, refining, and distribution activities introduces complex organic compounds and trace metals into 

aquifers, resulting in significant alteration of physico-chemical characteristics such as pH, total dissolved 

solids (TDS), and electrical conductivity (EC) (Eze and Chinemelu, 2025; Osisanya et al., 2024). These 

transformations compromise the potability and ecological safety of groundwater and have been linked to 

chronic health issues and ecosystem degradation (Sahoo et al., 2015; Singh et al., 2005; Adebayo et al., 2023). 

 

Traditional assessment techniques such as the Water Quality Index (WQI) provide a useful overview of 

groundwater suitability for use (Sutadian et al., 2017; Sunardi et al., 2020). However, WQI has limited 

diagnostic capacity, it does not distinguish which parameters or contaminants drive deterioration, nor does it 

identify the underlying hydrochemical processes responsible for observed changes (Thurston et al., 2011; 

Simeonov et al., 2003). This shortcoming restricts effective management interventions in hydrocarbon-

impacted regions, where remediation must target specific pollutants and sources. 
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To address this analytical gap, multivariate statistical techniques, particularly Principal Component Analysis 

(PCA), have gained prominence in hydrogeochemical research. PCA simplifies large, inter-correlated 

datasets into a smaller number of uncorrelated components that explain the dominant variance in water quality 

data (Shrestha and Kazama, 2007; Shrestha, 2021). It is particularly useful in identifying pollutant linkages, 

hydrochemical controls, and spatial-temporal variations in contaminated aquifers (Sousa et al., 2007; 

Simeonov et al., 2004; Arıman et al., 2024). Compared to clustering or discriminant methods, PCA is data-

driven, assumption-free, and offers a robust framework for uncovering key hydrochemical processes 

(Tabachnick and Fidell, 2001; Rashid et al., 2012). Recent applications in hydrocarbon-bearing terrains have 

shown that PCA effectively isolates dominant factors such as salinity, heavy metal enrichment, and organic 

load as indicators of petroleum-related groundwater contamination (Osisanya et al., 2024; Eze and 

Chinemelu, 2025). 

 

Despite these advances, few studies in the Niger Delta have integrated PCA with hydrochemical analysis to 

quantify and interpret the dominant factors controlling groundwater quality under sustained hydrocarbon 

pressure. Existing works are often limited to descriptive or index-based evaluations without statistically 

determining the interrelationships among key contaminants. This gap underscores the need for a multivariate 

analytical approach capable of identifying and ranking the principal parameters influencing groundwater 

degradation in the region. 

 

Therefore, this study applies Principal Component Analysis (PCA) to determine the dominant hydrochemical 

processes and key contaminants influencing groundwater quality in hydrocarbon-impacted areas of the Niger 

Delta. Specifically, the study aims to: characterize the spatial variability of major physico-chemical 

parameters, identify the principal components explaining groundwater quality variation; and interpret the 

hydrochemical processes and pollution sources controlling groundwater composition. This integration of 

PCA with hydrochemical datasets provides a robust framework for groundwater quality diagnosis, pollution 

source identification, and the development of sustainable management strategies for petroleum-impacted 

aquifers. 
 

2.0 Materials and Methods 

2.1 Description of Study Area 

The study was conducted in Otorogu, located within Udu Local Government Area, Delta State, Nigeria. 

Geographically, the area lies approximately between latitude 5°31′N and 5°37′N and longitude 5°48′E and 

5°54′E, about 12 km from Warri city. The area falls within the Niger Delta sedimentary basin, which is 

characterized by extensive hydrocarbon exploration and production activities.  

 

Geologically, Otorogu is underlain by the Benin Formation, consisting predominantly of unconsolidated 

sands and gravels with minor clay lenses, which form the major aquifer. The underlying Agbada Formation 

(interbedded sand and shale) and the deeper, more impermeable Akata Formation act as confining layers. The 

sediments are generally highly permeable, favoring groundwater recharge and flow, although clay or shale 

interbeds introduce heterogeneity (DFC, 2018). 

 

Hydrogeologically, the aquifer is largely unconfined to semi-confined, shallow, and highly susceptible to 

contamination from surface activities, including petroleum-related pollution. Groundwater flow generally 

follows a north-to-south gradient, but local topography, human activities, and subsurface heterogeneities can 

affect flow directions (SCIRP, 2020). The region receives an annual rainfall of approximately 1,900 mm, 

which supports aquifer recharge but also facilitates contaminant leaching. 

 

The study area hosts significant oil and gas infrastructure, including the Otorogu Gas Plant and associated 

pipelines, increasing the risk of hydrocarbon releases. The terrain is low-lying, interspersed with swampy 

areas, creeks, and farmlands, with sandy soils that promote pollutant infiltration. Vegetation ranges from wet 

forest to mangrove transition zones, with swampy areas near creeks. The 3D study area map is presented in 

Figure 1. 
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Figure 1: 3D Study Area Map 

 

2.2 Groundwater Sampling Design and Data Acquisition 

A total of 100 groundwater samples were collected from 100 domestic boreholes, with 50 samples collected 

during the dry season and 50 during the wet season, ensuring seasonal variation in groundwater quality was 

captured. Each borehole was sampled once. Borehole locations were georeferenced using a handheld GPS 

(accuracy ±3 m), and coordinates were recorded for spatial analysis. Sampling points were selected to cover 

areas with varying proximity to industrial and residential zones. 

 

Thirty-one (31) physico-chemical and microbiological parameters were analyzed for each sample. Physico-

chemical parameters included temperature, odor, color/clarity, pH, electrical conductivity (EC), turbidity, 

total suspended solids (TSS), salinity, alkalinity, total dissolved solids (TDS), dissolved oxygen (DO), total 

hydrocarbon content (THC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), 

bicarbonate (HCO₃⁻), sodium (Na⁺), potassium (K⁺), calcium (Ca²⁺), magnesium (Mg²⁺), chloride (Cl⁻), 
phosphorus (P), ammonium (NH₄⁺), nitrite (NO₂⁻), nitrate (NO₃⁻), sulfate (SO₄²⁻), and heavy metals 

including iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), and 

lead (Pb). Microbiological parameter included total coliform counts (TCC). 

 

2.2.1 Laboratory Analysis and QA/QC 

All samples were collected in pre-cleaned polyethylene bottles and preserved according to APHA (2017) 

guidelines. Physico-chemical analyses were conducted using calibrated instruments: pH and EC meters, 

spectrophotometers for trace metals, and standard titration procedures for alkalinity and hardness. Total 

hydrocarbon content was measured using UV-visible spectrophotometry. Microbiological analyses were 

performed using membrane filtration and culture techniques. 

Quality assurance and control (QA/QC) procedures included: 

1. Calibration of all instruments before analysis using standard solutions. 

2. Analysis of method blanks and laboratory duplicates. 

3. Use of certified reference materials for trace metal determination. 

4. Detection limits and uncertainty ranges were maintained according to standard laboratory protocols. 
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2.3 Data Pre-Processing 

Prior to statistical analysis, all continuous variables were checked for missing values and outliers. Missing 

values (<2% of dataset) were replaced using the variable mean, and extreme outliers (>3 standard deviations 

from the mean) were examined and winsorized based on contextual justification. To eliminate scale effects 

among variables, data were standardized using z-score transformation presented in equation 1: 

ij j

ij

j

x x
Z

s

−

−
=            (1) 

Where; xij is the observed value, xˉj the mean, and sj the standard deviation of variable j. 

 

2.4 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) was employed to reduce the dimensionality of the water quality dataset 

and to identify the dominant factors controlling groundwater chemistry (Jolliffe and Cadima, 2016). Prior to 

PCA, data suitability was assessed using the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy 

and Bartlett’s Test of Sphericity. A KMO value ≥0.7 indicates that the sample is adequate for factor analysis, 

while a significant Bartlett’s test (p < 0.05) confirms that sufficient correlations exist among variables to 

justify PCA.  

 

PCA was conducted on the standardized correlation matrix because the variables were measured in different 

units. Eigenvalues (λᵢ) and eigenvectors (vᵢ) were extracted from the matrix according to equation (2): 

 

i i iRv v=            (2) 

 

Components with eigenvalues greater than one (Kaiser Criterion) and those appearing before the inflection 

point on the screen plot were retained. The total variance explained by each component was computed using 

Equation (3): 

 

100i
i

i

Var



= 


          (3) 

 

To further validate component retention, parallel analysis was performed. The retained components were 

subjected to Varimax (orthogonal) rotation to enhance interpretability by maximizing the variance of squared 

loadings and minimizing cross-loadings among factors. Varimax rotation was selected because the underlying 

hydrochemical processes were assumed to act largely independently, consistent with groundwater systems 

dominated by distinct geochemical controls. Variables with loadings ≥0.70 were regarded as significant 

contributors to the principal components (Jolliffe, 2002; Hair et al., 2010). Communalities were examined to 

determine the proportion of variance in each variable explained by the retained components. The derived 

factor loadings were then interpreted to infer hydrochemical processes influencing groundwater quality 

(Field, 2013). 

 

All statistical analyses were conducted using IBM SPSS Statistics 25. Although the sample-to-variable ratio 

(N/p = 100/31 = 3.2) was slightly below the ideal range recommended for highly stable PCA solutions, the 

high KMO value (0.849) and acceptable communalities confirmed that the dataset was adequate and the 

extracted components were robust (Field, 2013; Jolliffe and Cadima, 2016). 

 

3.0 Results and Discussion  

3.1 Suitability of PCA for Groundwater Data 

Preliminary diagnostics presented in Table 1 confirmed the suitability of the dataset for Principal Component 

Analysis (PCA).  
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Table 1: KMO and Bartlett’s Test for Dry and Wet Season 

Test Dry Season Wet Season 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.849 0.769 

Bartlett's Test of Sphericity Approx. Chi-Square 3.645E3 3.334E3 

 df 465 465 

 Sig. .000 .000 

 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy yielded values of 0.849 for the dry season 

and 0.769 for the wet season, both exceeding the recommended threshold of 0.6, indicating that correlations 

among variables were sufficiently compact for PCA (Kaiser, 1974; Yong and Pearce, 2013). Bartlett’s Test 

of Sphericity was significant in both seasons (p < 0.001), confirming that the correlation matrices were not 

identity matrices and that the variables were adequately interrelated for factor extraction (Hair et al., 2019). 

Communalities were examined to determine how well each variable was represented by the extracted 

components as observed in Table 2.  

 

Table 2: Estimated Communalities for Dry and Wet Season 
 

S/N 

 

Variables 

Dry Season Wet Season 

Initial Extraction Initial Extraction 

1 pH 1.000 .509 1.000 .647 

2 NO3 1.000 .989 1.000 .972 

3 EC 1.000 .974 1.000 .943 

4 Turb. 1.000 .942 1.000 .443 

5 DO 1.000 .793 1.000 .907 

6 TDS 1.000 .974 1.000 .898 

7 Na 1.000 .941 1.000 .924 

8 Pb 1.000 .901 1.000 .939 

9 SO4 1.000 .986 1.000 .971 

10 Zn 1.000 .917 1.000 .991 

11 Cu 1.000 .947 1.000 .976 

12 Cl 1.000 .987 1.000 .986 

13 Fe 1.000 .914 1.000 .991 

14 HCO3 1.000 .978 1.000 .972 

15 TSS 1.000 .712 1.000 .616 

16 NO2 1.000 .988 1.000 .968 

17 Cd 1.000 .943 1.000 .903 

18 Mg 1.000 .895 1.000 .946 

19 P 1.000 .962 1.000 .928 

20 Alkalinity 1.000 .884 1.000 .804 

21 Ca 1.000 .943 1.000 .982 

22 Sal. 1.000 .974 1.000 .976 

23 Col. 1.000 .962 1.000 .714 

24 BOD 1.000 .562 1.000 .814 

25 COD 1.000 .962 1.000 .976 

26 K 1.000 .951 1.000 .956 

27 NH4N 1.000 .988 1.000 .972 

28 Mn 1.000 .918 1.000 .989 

29 Cr 1.000 .970 1.000 .974 

30 THC 1.000 .821 1.000 .906 

31 Temp. 1.000 .762 1.000 .575 

 

The analysis of communalities for the dry season indicated that the majority of water quality parameters were 

well represented in the extracted components. Parameters such as nitrate (0.989), sulphate (0.986), chloride 

(0.987), ammonium (0.988), and chromium (0.970) exhibited particularly high communalities, suggesting 

that they contributed substantially to the total variance in groundwater quality. These variables can therefore 

be regarded as key indicators of contamination during the dry season. In contrast, parameters including pH 

(0.509), biological oxygen demand (BOD, 0.562), and temperature (0.762) showed lower communalities, 

implying a relatively minor role in explaining the observed variability.  
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This pattern suggests that groundwater quality deterioration in the dry season is predominantly influenced by 

nutrient enrichment and toxic heavy metals, likely arising from leachates associated with waste disposal, 

industrial activities, and residual petroleum hydrocarbons that facilitate the mobilization of such 

contaminants. 

 

During the wet season, the communalities reflected a somewhat different distribution of variance. Trace 

metals and ionic species including zinc (0.991), iron (0.991), chloride (0.986), sulphate (0.971), calcium 

(0.982), and manganese (0.989) as well as chemical oxygen demand (COD, 0.976) and THC (0.906) exhibited 

high communalities, highlighting their significant contributions to groundwater variability under conditions 

of enhanced recharge.  

 

Conversely, parameters such as turbidity (0.443) and temperature (0.575) showed weak communalities, 

indicating that these variables were less consistent in explaining variance across samples. The prominence of 

trace metals and organic-related parameters during the wet season suggests that hydrological processes, 

including leaching, dissolution, and redox-mediated mobilization, play major roles in transporting 

hydrocarbon contaminants.  

 

These observations are consistent with established evidence that wet-season recharge promotes the infiltration 

of dissolved metals and organic pollutants from hydrocarbon-impacted soils into groundwater systems, 

thereby altering the distribution and bioavailability of contaminants. 

 

3.2 Component Extraction and Variance Explained 

The Total Variance Explained for both the dry and wet seasons provided insight into the proportion of total 

variability in groundwater quality accounted for by the extracted components. Tables 3 and 4 present the 

eigenvalues, percentage of variance, and cumulative variance associated with each principal component 

before and after Varimax rotation.  

As shown in Table 3, the first principal component (PC1) in the dry season accounted for 68.75% of the total 

variance, indicating that a single dominant factor controls most of the groundwater chemistry during this 

period. This suggests strong interrelationships among major ions and potential influence from concentrated 

sources such as evaporative enrichment, ion exchange, or anthropogenic inputs intensified by low recharge 

conditions.  

 

The second, third, and fourth components contributed 11.19%, 5.84%, and 4.91% of the variance, 

respectively, bringing the cumulative variance to 90.69%. The high total variance captured by the first few 

components reflects that the chemical characteristics of the groundwater are largely driven by a few key 

hydrochemical and contamination processes, notably nutrient loading and heavy metal mobilization 

associated with industrial and domestic activities during the dry season. 

 

In contrast, during the wet season (Table 4), the first component (PC1) explained 63.17% of the total variance, 

while the second, third, and fourth components accounted for 11.84%, 6.09%, and 5.55%, respectively, with 

a cumulative variance of 86.66%. The slightly lower variance explained by PC1 compared to the dry season 

suggests a more complex hydrochemical regime under recharge conditions.  

 

This could be attributed to the dilution effect of rainfall and increased leaching of both inorganic and organic 

constituents from surface and subsurface materials. The redistribution of variance among multiple 

components in the wet season also implies the involvement of mixed geogenic and anthropogenic processes, 

including metal dissolution, redox reactions, and hydrocarbon-related influences that become more 

pronounced when the water table rises. 
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Table 3: Total Variance Explained for Dry Season 
Comp

onent 

Initial Eigenvalues Extraction Sums of Squared 

Loading 

Rotation Sums of Squared 

Loading  

S/N Total 

% of 

Varianc

e 

Cumulati

ve % Total 

% of 

Varianc

e 

Cumulati

ve % Total 

% of 

Variance 

Cumulati

ve % 

1 21.313 68.751 68.751 21.31 68.751 68.751 18.69 60.282 60.282 

2 3.467 11.185 79.936 3.467 11.185 79.936 4.729 15.256 75.538 

3 1.812 5.844 85.780 1.812 5.844 85.780 2.466 7.954 83.492 

4 1.522 4.911 90.691 1.522 4.911 90.691 2.232 7.200 90.691 

5 .983 3.172 93.864       

6 .620 2.001 95.864       

7 .484 1.562 97.427       

8 .365 1.176 98.603       

9 .130 .418 99.021       

10 .114 .369 99.390       

11 .047 .151 99.541       

12 .045 .145 99.685       

13 .028 .090 99.775       

14 .019 .062 99.837       

15 .013 .041 99.879       

16 .010 .033 99.912       

17 .008 .026 99.938       

18 .008 .025 99.963       

19 .004 .012 99.975       

20 .003 .010 99.985       

21 .002 .008 99.993       

22 .001 .003 99.996       

23 .000 .002 99.998       

24 .000 .001 99.999       

25 .000 .000 100.000       

26 7.32E-5 .000 100.000       

27 4.44E-5 .000 100.000       

28 3.35E-5 .000 100.000       

29 9.87E-7 3.19E-6 100.000       

30 1.24E-7 4.01E-7 100.000       

31 1.0E-16 3.4E-16 100.000       
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Table 4: Total Variance Explained for Wet Season 
Comp

onent 

Initial Eigenvalues Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

 Total % of 

Variance 

Cumulati

ve % 

Total % of 

Variance 

Cumulati

ve % 

Total % of 

Variance 

Cumulati

ve % 

1 20.848 63.174 63.174 20.85 63.174 63.174 14.84 44.981 44.981 

2 3.909 11.844 75.019 3.909 11.844 75.019 7.397 22.416 67.396 

3 2.009 6.089 81.108 2.009 6.089 81.108 3.989 12.089 79.485 

4 1.833 5.553 86.661 1.833 5.553 86.661 2.368 7.176 86.661 

5 .962 2.915 89.576       

6 .876 2.654 92.230       

7 .554 1.678 93.908       

8 .471 1.427 95.336       

9 .409 1.239 96.575       

10 .341 1.032 97.607       

11 .243 .737 98.344       

12 .171 .518 98.862       

13 .103 .314 99.176       

14 .088 .266 99.442       

15 .057 .173 99.615       

16 .042 .129 99.743       

17 .023 .069 99.812       

18 .019 .056 99.869       

19 .012 .036 99.904       

20 .009 .028 99.932       

21 .006 .019 99.951       

22 .005 .014 99.966       

23 .003 .010 99.976       

24 .003 .009 99.985       

25 .002 .006 99.991       

26 .001 .004 99.995       

27 .001 .002 99.997       

28 .000 .001 99.998       

29 .000 .001 100.000       

30 9.03E-5 .000 100.000       

31 1.56E-5 4.74E-5 100.000       

 

Overall, the pattern observed across both seasons indicates that a few principal factors dominate the 

hydrochemical variability, but their relative strength shifts with seasonal dynamics reflecting the interplay 

between dry-season concentration effects and wet-season recharge and mobilization mechanisms. The results 

of the total variance explained were further supported by the scree plots for both seasons, as presented in 

Figures 2 and 3.  
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Figure 2: Scree Plot for Dry Season 

 

 
Figure 3: Scree Plot for Wet Season 

 

The scree plots illustrate the distribution of eigenvalues across all principal components, providing a visual 

confirmation of the number of components to retain. In the dry season (Figure 2), a sharp decline in 

eigenvalues is observed after the first component, followed by smaller decreases for the second and third 

components, with the curve leveling off after the fourth component indicating that four components 

adequately capture the majority of the variance. Similarly, in the wet season (Figure 3), the eigenvalues drop 

steeply after the first component, with the “elbow” occurring at the fourth component, consistent with the 

results from the total variance explained table. These scree plots validate the selection of four principal 

components for both dry and wet seasons, confirming that they effectively summarize the dominant factors 

influencing groundwater quality. 
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3.3 Component Interpretation 

The rotated component matrices highlighted the dominant factors influencing groundwater quality in both 

seasons (Table 5). In the dry season, four components were extracted. The first, an Ionic/Salinity–Nutrient 

Factor (60% variance), was dominated by nitrate, EC, TDS, sulphate, chloride, bicarbonate, calcium, 

phosphate, ammonium, and salinity, reflecting ionic enrichment and nutrient loading from agricultural runoff, 

sewage, and waste leachates. The second component, a Heavy-Metal Factor (15%), included Pb, Cd, Cr, Cu, 

Fe, and Zn, indicating contamination from industrial effluents and petroleum residues. The third, a 

Turbidity/Microbial Factor (7.95%), represented microbial contamination and suspended solids, while the 

fourth, a Physical–Organic/Thermal Factor (7.2%), captured influences of TSS, temperature, and alkalinity 

from organic matter decomposition and thermal variations this findings is similar to (Ali et al. 2024). 

 

For the wet season, four components were similarly identified. The first, an Ionic–Nutrient/Salinity Factor 

(58–60%), included major ions and nutrients, reflecting leaching and dilution effects under recharge. The 

second, a Heavy-Metal Factor (14–16%), comprised Pb, Cd, Cr, Cu, Zn, Fe, and Mn, showing mobilization 

of metals during infiltration. The third, a Microbial/Turbidity Factor (8–9%), indicated surface-derived 

microbial contamination and suspended solids, while the fourth, an Organic–Thermal/Hydrocarbon Factor 

(6–7%), highlighted the influence of TSS, temperature, and total hydrocarbons under rainfall-driven 

mobilization this is further comfirmed by the study of (Aduojo et al. 2024). 

 

Overall, groundwater quality is primarily controlled by ionic enrichment, nutrient loading, heavy metals, 

microbial activity, and organic/thermal processes, with the wet season showing a more distributed influence 

due to recharge and contaminant mobilization, while the dry season is dominated by concentrated nutrients 

and metals. 

 

Table 5: Summary Results of Critical Variables Classification 
Season Component Dominant Factor 

(Interpretation) 

Variance 

Explained (%) 

Key Variables with High Loadings 

(≥0.7) 

Dry 

Season 

1 Ionic / Salinity–Nutrient 

Factor 

60% NO₃ (.969), EC (.959), TDS (.959), SO₄ 
(.961), Cl (.960), HCO₃ (.917), Ca 

(.912), P (.926), NH₄N (.960), Salinity 

(.958), COD (.912), Na (.869), K (.865), 

Mg (.823), Mn (.857) 

2 Heavy-Metal / Trace 

Contaminant Factor 

15% Pb (.892), Cd (.899), Cr (.740), Cu 

(.586), Fe (.840), Zn (.859) 

3 Turbidity / Microbial 

Contamination Factor 

7.95% Turbidity (.943), Coliform (.960), DO 

(.668), BOD (.549) 

4 Physical–Organic / 

Thermal Factor 

7.2% TSS (.816), Temperature (.803), 

Alkalinity (.760), BOD (.401) 

 

 

Wet 

Season 

1 Ionic–Nutrient / Salinity 

Factor 

58–60% NO₃ (.865), EC (.870), TDS (.817), 

Salinity (.892), SO₄ (.899), Cl (.686), 

HCO₃ (.932), Ca (.922), Mg (.926), P 

(.940), K (.912), NH₄N (.827), COD 

(.923) 

2 Heavy-Metal 

Contamination Factor 

14–16% Pb (.900), Cd (.885), Cr (.902), Cu 

(.786), Zn (.736), Fe (.743), Mn (.707), 

Cl (.501) 

3 Microbial / Turbidity 

Factor 

8–9% Turbidity (–.609), Coliform (–.811), 

BOD (.771), TSS (.707) 

4 Organic–Thermal / 

Hydrocarbon Factor 

6–7% TSS (.707), Temperature (–.579), Total 

Hydrocarbon Content (–.356), Coliform 

(–.811) 
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Results of the rotated component matrix was further cemented with the component plot in rotated space 

presented in Figures 4 and 5 respectively 

 

 
Figure 4: Component Plot in Rotated Space for Dry Season 

 

 
Figure 5: Component Plot in Rotated Space for Wet Season 

Figures 4 and 5 present the component plots in rotated space for the dry and wet seasons, respectively. These 

three-dimensional visualizations illustrate how the measured groundwater quality parameters are grouped 

under the extracted principal components, confirming the factor classification obtained in the rotated 

component matrices. 

For the dry season, the plot shows a clear clustering of ionic and nutrient variables (NO₃, EC, TDS, SO₄, Cl, 

HCO₃, Ca, NH₄N, and salinity) along the first component axis, indicating their dominant role in explaining 

the variance in groundwater quality. Heavy metals such as Pb, Cd, and Cr, together with Cu and Fe, cluster 
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distinctly along the second component axis, supporting the identification of a heavy-metal contamination 

factor. Turbidity and coliforms plot away from the ionic and metal clusters, aligning with the third component 

and confirming their microbial and suspended solids-related influence. Finally, TSS, temperature, and 

alkalinity separate into the fourth component, reflecting organic–thermal processes. The spatial segregation 

of these clusters demonstrates that different processes ionic enrichment, trace metal mobilization, microbial 

contamination, and organic/thermal effects independently shape groundwater chemistry during the dry 

season. 

 

In contrast, the wet season component plot shows a more compact but interconnected clustering of variables. 

Ionic and nutrient species again dominate the first component, but the grouping is broader, with phosphate, 

potassium, and ammonium tightly aligned with EC, TDS, and major anions. Heavy metals (Pb, Cd, Cr, Cu, 

Fe, Zn, and Mn) form a distinct but stronger cluster compared to the dry season, reflecting enhanced 

mobilization during recharge. Microbial indicators (coliforms, BOD, turbidity) plot closer to the center of the 

component space, suggesting that their influence overlaps with both ionic and organic factors in the wet 

season. Notably, total hydrocarbon content (THC) aligns with TSS and temperature under the fourth 

component, illustrating the hydrocarbon mobilization effect during rainfall and runoff infiltration. This 

configuration indicates that recharge processes intensify interactions among chemical, microbial, and 

hydrocarbon contaminants, producing a more distributed pattern of influence compared to the dry season.This 

align with the study of (Longe and Edoka, 2025) 

 

The rotated component matrices and component plots in rotated space revealed that the underlying factors 

were dominated by groups of chemical, microbial, and hydrocarbon-related parameters, but their relative 

importance varied with season. By isolating the dominant loadings, it was possible to identify critical 

parameters that acted as indicators of groundwater impairment. The summary table of critical parameters for 

both seasons is presented in Table 6 

 

Table 6: Summary Table of Critical Parameters Influencing Groundwater Quality 

Contamination Factor Critical Parameters  

(Dry Season) 

Critical Parameters  

(Wet Season) 

Ionic–Nutrient Factor NO₃, Cl⁻, SO₄²⁻, HCO₃⁻, 
Salinity, EC, TDS, Ca, NH₄-N 

NO₃, Cl⁻, SO₄²⁻, HCO₃⁻, 
PO₄³⁻, K⁺, NH₄-N, EC, TDS, 

Salinity 

Heavy Metal Factor Pb, Cd, Cr, Cu, Fe Pb, Cd, Cr, Cu, Fe, Zn, Mn 

Microbial–Turbidity Factor Coliforms, Turbidity Coliforms, Turbidity, BOD 

Organic–Thermal / 

Hydrocarbon Factor 

TSS, Temperature, Alkalinity TSS, Temperature, Alkalinity, 

THC 

 

4.0 Conclusion 

This study applied Principal Component Analysis (PCA) to identify and interpret the dominant factors 

influencing groundwater quality in a hydrocarbon-impacted environment. Four principal components 

explained over 80% of the total variance in both dry and wet seasons, reflecting the major controlling 

processes, including ionic–nutrient enrichment, heavy-metal contamination, microbial activity, and organic–

thermal dynamics. Hydrocarbons were specifically detected during the wet season, highlighting their 

mobilization under recharge conditions and the potential for pollutant transport into aquifers. Seasonal 

variations indicated that while dilution occurs during rainfall, trace metals and nutrients remain persistent, 

emphasizing their long-term impact on groundwater quality. The study provides essential baseline 

information for groundwater monitoring and management, identifying critical indicators such as nitrate, 

chloride, sulphate, lead, and cadmium. Limitations include the lack of direct correlation mapping for 

hydrocarbons and the absence of long-term temporal monitoring, suggesting that future work should integrate 

spatial hydrogeochemical analysis and continuous sampling to better guide remediation strategies in 

hydrocarbon-producing regions. 

 

\ 
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