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ABSTRACT 
 

Airports are major contributors to air pollution, which can adversely affect local air quality and public 

health. This study investigates the influence of weather conditions on pollutant levels at Nnamdi Azikiwe 

International Airport, focusing on Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), and Carbon Monoxide 

(CO). The study aims to analyze how weather variables such as temperature, wind speed, and wind direction 

affect pollutant concentrations. Data collection spanned from October 2021 to September 2023 using the 

MSA Altair 5X Multi Gas Detector, with measurements taken eight times a month at three different times of 

day. The analysis involved time series and multiple regression models to evaluate the impact of weather on 

pollutant levels. Results revealed significant variations in pollutant concentrations related to different wind 

directions and temporal trends. Specifically, temperature and wind direction were found to significantly 

influence CO, SO2, and NO2 levels, with high explanatory power in the regression models. The study 

concludes that weather conditions play a critical role in determining pollutant concentrations at the airport. 

Recommendations include incorporating weather variables into air quality management strategies, 

optimizing flight schedules based on weather forecasts, and enhancing emission control technologies. 

 

Keywords: Aircraft Emission, Air Quality, Environment, Pollutants, Weather. 

 
1.0. Introduction 

The environment, encompassing air, soil, and water, serves as humanity's fundamental life support system. 

Historically, these components were pristine and undisturbed, forming a complex web of relationships 

connecting humans to the natural world. Despite significant scientific and technological advances, humanity 

remains utterly dependent on the environment for essential resources such as air, water, food, shelter, and 

energy (Tyler et al., 2010). The natural environment consists of four interlinked systems: the atmosphere, 

hydrosphere, lithosphere, and biosphere, which are in a state of constant change, primarily due to human 

activities (Tyler et al., 2010). The intensification of human activities has led to numerous adverse effects on 

these systems, particularly the hydrosphere and atmosphere. The present-day atmosphere, significantly 

different from the Pre-Industrial Revolution Era, has seen substantial changes in chemical composition due 

to intense human activities (Ahuti, 2015). 

Furthermore, pollution, as defined by Wiwanitkit (2011), is “the unwanted destruction of the natural 

environment by human and naturally induced insults," and it has become a global problem exacerbated by 

population growth and urbanization. As cities expand and industrial activities increase, so does the 

consumption of energy and the discharge of waste, leading to severe environmental pollution. This pollution 

manifests in various forms, including air pollutants like smoke, smog, and gases such as carbon monoxide 

(CO), nitrogen oxides (NOx), and sulphur oxides (SOx), which pose significant health risks and 

environmental challenges (Wiwanitkit, 2011; Kelishadi, 2012; WHO, 2015, 2016). Among these pollutants, 

particulate matter with a diameter of 2.5 micrometers or less (PM2.5) has gained considerable attention due 

to its adverse effects on health and the environment (Cheng et al., 2021). Studies have shown that 

meteorological factors such as temperature, humidity, wind speed, and air pressure significantly affect the 
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variation of PM2.5 concentrations (Cheng et al., 2021; Ma et al., 2020; Yousefian et al., 2020). 

Nitrogen dioxide (NO2), another major pollutant, has been linked to the formation of secondary fine particles 

and tropospheric ozone (Shen et al., 2021). Changes in NO2 concentrations are influenced by both emissions 

and meteorological conditions, with seasonal and spatial variations observed across different regions (Shen 

et al., 2021). Ozone (O3) pollution, a growing concern, is also significantly influenced by synoptic weather 

patterns and regional transport of pollutants (Hu et al., 2024). For instance, high-concentration ozone 

pollution events in the Yangtze River Delta were found to be driven by evolving weather patterns that 

facilitated the transport of ozone-rich air masses (Hu et al., 2024). 

Aviation is one of the sectors significantly contributing to air pollution. Airports, seen as hubs of human and 

aircraft-related mechanical activities, emit substantial amounts of pollutants into the environment 

(Kliengchuay et al., 2021). Studies from various regions have demonstrated that the interaction between 

meteorological conditions and pollutants like PM10, NO2, and CO plays a critical role in pollution episodes 

(Kliengchuay et al., 2021; Grigorieva & Lukyanets, 2021). For instance, in Lamphun, Thailand, PM10 

concentrations were shown to be strongly influenced by temperature, humidity, and wind speed (Kliengchuay 

et al., 2021), while in Russia, hot weather and air pollution were found to have a synergistic effect on 

respiratory health (Grigorieva & Lukyanets, 2021). 

This study focuses on Nnamdi Azikiwe International Airport, investigating the intricate relationships between 

weather variables and pollutant concentrations over a two-year period from October 2021 to September 2023. 

The primary aim of this article is to explore how weather conditions influence the levels of various pollutants 

at the airport. Specifically, the study involves an in-depth analysis of the proportions of cardinal wind 

directions across defined intervals to understand their distribution and variability over time and forecast same. 

Additionally, it tests the null hypothesis (H0) that there is no discernible temporal trend in the individual 

concentrations of nitrogen dioxide (NO2), sulphur dioxide (SO2), and carbon monoxide (CO) over the study 

period. The research also evaluates the null hypothesis (H0) that weather factors such as temperature, wind 

speed, and wind direction have no significant impact on the concentrations of these pollutants. 

2.0 Methodology 

 

2.1. Materials 

This study employs an empirical analytical approach to investigate the influence of weather variables on 

pollutant concentrations at Nnamdi Azikiwe International Airport from October 2021 to September 2023. 

The data collection focused on monitoring three key pollutants: carbon monoxide (CO), sulphur dioxide 

(SO2), and nitrogen dioxide (NO2). Ground-level pollution concentrations were measured using the MSA 

Altair 5X Multi Gas Detector, a high-precision environmental monitoring device equipped with advanced 

MSA cell sensors and various optional infrared sensors, ensuring rapid response times and high reliability. 

 

To ensure accurate measurements, the MSA Altair 5X was calibrated prior to data collection using certified 

standard gas mixtures. The calibration process followed the manufacturer’s guidelines and involved zero and 

span calibration using clean air and calibration gases for CO, SO2, and NO2. Calibration was performed 

biannually to maintain measurement precision, and the device was subjected to compensation algorithms that 

adjusted for environmental factors such as temperature, humidity, and pressure. These algorithms 

compensated for sensor drift and ensured the data accurately reflected pollutant concentrations under varying 

atmospheric conditions. 

 

Pollution samples were collected eight times a month, with each site visited twice and sampled for three 

minutes per site. Sampling occurred at three different times of day: morning (8:00-11:30 am), afternoon 

(12:30-3:30 pm), and evening (4:00-6:45 pm), to capture variations in pollutant levels throughout the day. 

The instrument was recalibrated every six months, ensuring consistent data quality. Calibration checks were 

performed before and after each sampling session to verify that the device remained within its specified 

accuracy range. 
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2.2. Methods 

After data collection, the pollutant concentration readings were processed using statistical analysis tools. The 

analysis involved time series decomposition to identify seasonal trends and patterns in the pollutant levels. 

Additionally, ordinal regression models were applied to assess the relationship between weather variables 

(such as temperature, wind speed, and wind direction) and pollutant concentrations. Residual diagnostic tests 

were conducted to ensure the robustness of the regression models. The analysis further included the use of 

compensation algorithms to correct for the effects of environmental noise, sensor drift, and cross-sensitivity 

between different gases. 

 

The general form of the ordinal regression model fitted in the study can be expressed as: 

 

logit[ℙ(𝑌 ≤ 𝑗)] = 𝛼𝑗 − 𝛽1𝑋1 − 𝛽2𝑋2 − 𝛽3𝑋3 −⋯− 𝛽𝑘𝑋𝑘      (1) 

 

Where: 

o 𝑌 is the ordinal response variable (pollutant concentration levels: CO, SO2, NO2). 

o 𝑗 refers to the cut-off points (or thresholds) for the ordinal categories. 

o 𝛼𝑗 is the threshold (cut-off) parameter for category 𝑗. 

o 𝑋1, 𝑋2, … , 𝑋𝑘 are the predictor variables (temperature, wind speed, cardinal wind direction). 

o 𝛽1, 𝛽2, … , 𝛽𝑘 are the coefficients (parameters) to be estimated for each predictor. 

 

3.0 Result and Discussion 
 

3.1. Analysis of Wind Direction Proportions Across Intervals 

Table 1: Proportions of Cardinal Wind Directions Across Specified Intervals 
Count of Cardinal-Wind-Direction  

Intervals Labels ESE (%) S (%) SE (%) SSE (%) SSW (%) Grand Total (%) 

3.47-4.47 9.13 19.88 0.00 30.53 3.05 62.60 

4.47-5.47 8.69 17.40 9.14 0.00 0.00 35.23 

366.47-367.47 0.00 0.00 0.00 0.00 2.17 2.17 

Grand Total 17.82 37.28 9.14 30.53 5.22 100.00 

Source: Field Survey, 2023 

 

The analysis of cardinal wind directions (ESE, S, SE, SSE, and SSW) across different intervals provides 

insight into the variability and distribution of wind patterns. These wind patterns play a significant role in 

pollutant dispersion, influencing local air quality at Nnamdi Azikiwe International Airport. Studies have 

established strong links between meteorological factors such as wind direction, wind speed, and air pollution 

dispersion. For instance, Ma et al. (2020) highlighted the critical role of wind speed and direction in the 

transport and dispersion of tropospheric ozone (O3) in Lanzhou, China, showing that certain wind patterns 

can exacerbate or mitigate pollution levels. Similarly, Hu et al. (2024) found that evolving synoptic weather 

patterns influence the transport and sources of high-concentration ozone in the Yangtze River Delta, China, 

indicating that wind plays a key role in the spread of pollutants over multiple regions. In the current analysis, 

the dominance of the S and SSE wind directions in the 3.47-5.47 intervals suggests that these directions are 

more prevalent in carrying pollutants across the area.  

This aligns with findings by Cheng et al. (2021), who demonstrated that static or high-speed winds could 

contribute to higher particulate matter (PM2.5) concentrations due to limited dispersion in certain areas. Shen 

et al. (2021) further corroborated the role of unfavorable weather conditions, including wind, in increasing 

nitrogen dioxide (NO2) concentrations in urban agglomerations, highlighting the significant impact of 

meteorological factors on air quality. Interestingly, the absence of wind in the interval 366.47-367.47 and the 

minor presence of SSW suggests a near-stagnant condition. This kind of stagnation can contribute to the 

accumulation of pollutants, as noted by Kliengchuay et al. (2021), who observed that low wind speeds, 

coupled with certain pollutant levels, contribute to the persistence of PM10 concentrations in Lamphun, 

Thailand, particularly during the dry season. Therefore, wind direction and speed, as reflected in Table 1, 

directly influence pollutant levels, supporting existing literature on the interaction between weather and air 

quality. This interaction emphasizes the need for a comprehensive understanding of wind patterns in pollution 

studies to effectively model and mitigate the impact of harmful emissions. 
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3.2. Temporal trend in the individual concentrations of pollutants over the study periods 

This section presents the trend analysis of pollutants—Carbon Monoxide (CO), Sulphur Dioxide (SO2), and 

Nitrogen Dioxide (NO2)—across different months, providing a comprehensive overview of the mean 

concentrations during the study periods (October 2021 – September 2023). 

 

3.2.1 Carbon Monoxide (CO) Trend  

Figure 1 illustrates the forecast for Carbon Monoxide (CO) concentrations extending to September 2024, 

incorporating forecasted values alongside lower and upper confidence intervals. This forecast is generated 

using the Exponential Smoothing (ETS) model, a robust time series forecasting method integrated into 

Microsoft Excel. The ETS model, which is particularly effective for handling data characterized by trends 

and seasonality, has been applied in numerous studies on environmental forecasting (Ahuti, 2015; López et 

al., 2019). 

Beginning with the observed value for August 2023 (1.4331), the model provides monthly forecasted values 

from October 2023 to September 2024. These values are accompanied by corresponding lower and upper 

confidence bounds, which reflect the inherent uncertainty in such projections. The forecast suggests a gradual 

rise in CO concentrations throughout the forecast period, with the values increasing progressively toward 

mid-2024. However, the flattening of the forecast curve towards the latter part of the period should not be 

misconstrued as an indication of stable CO levels. Instead, this pattern highlights the model's increasing 

uncertainty over time, a common limitation in long-term predictions (Tyler et al., 2010; Wiwanitkit, 2011). 

 

 
Figure 1: Forecast for Carbon Monoxide (CO) 

 

The implications of this forecast are significant, as prolonged elevated CO levels pose considerable health 

risks, particularly in areas adjacent to major transportation hubs like airports (Kelishadi, 2012; WHO, 2016). 

Should the forecasted upward trend materialize, there could be a notable exacerbation of respiratory and 

cardiovascular diseases, particularly in vulnerable populations. This trend underscores the necessity for 

proactive mitigation strategies aimed at reducing CO emissions from aviation and related activities, including 

advancements in fuel efficiency and the adoption of stricter emissions regulations (WHO, 2015, 2016). 

The uncertainty captured by the confidence bounds further emphasizes the critical need for immediate 

intervention. Should CO concentrations approach the upper confidence limits, the environmental and health 

impacts could be more severe than anticipated. Integrating meteorological factors—such as wind direction 

and speed—into these forecasts is essential, given their established influence on pollutant dispersion patterns 

(Ahuti, 2015; López et al., 2019).  

 

3.2.2 Sulphur Dioxide (SO2) Trend  

Figure 2 presents the forecast for Sulphur Dioxide (SO₂) concentrations up to September 2024, employing 

the Exponential Smoothing (ETS) model, a time series forecasting model available in Microsoft Excel. The 

ETS method is known for its capacity to accommodate trends and seasonal variations, making it a suitable 
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tool for environmental forecasting, particularly in studies examining the effects of pollutant concentrations 

over time (Ahuti, 2015; López et al., 2019). 

Starting with the observed value for September 2023 (0.0135), the model provides monthly forecasts for SO₂ 
levels from October 2023 to September 2024, complete with lower and upper confidence bounds. These 

confidence bounds highlight the uncertainty inherent in the forecasting process and offer a range within which 

the actual SO₂ concentrations are expected to fall. The forecast indicates a relatively stable trend in SO₂ 
concentrations throughout the forecast period, with only minor fluctuations observed month-to-month. 

 

 
Figure 2: Forecast for Sulphur Dioxide (SO₂) 
 

The stability in the forecasted SO₂ levels suggests that significant changes in emission sources are unlikely, 

barring unforeseen industrial developments or shifts in aviation-related activities at the study site (Kelishadi, 

2012). However, the relatively narrow range of confidence bounds signifies that the model predicts minimal 

variability, suggesting a continued low but steady presence of SO₂ in the atmosphere near Nnamdi Azikiwe 

International Airport. Given the health risks associated with prolonged SO₂ exposure, particularly in relation 

to respiratory conditions (WHO, 2015, 2016), even small increases could exacerbate local air quality 

concerns. 

Moreover, meteorological factors such as wind direction and speed, which have been shown to influence the 

dispersion of pollutants, play a crucial role in determining SO₂ concentration levels (Tyler et al., 2010). Given 

the relatively low forecasted concentrations, future models might benefit from incorporating weather data to 

enhance accuracy and account for fluctuations in pollutant dispersion (López et al., 2019). This consideration 

is vital, as certain wind patterns—particularly those identified in earlier sections—may contribute to localized 

pollution events or mitigate the impact of emissions depending on seasonal variations (Wiwanitkit, 2011). 

The forecasted stability of SO₂ concentrations has implications for environmental management and health 

policy. While the predicted levels remain low, maintaining this status requires continued efforts to control 

emissions from both aviation and surrounding industrial activities. Without stringent environmental 

regulations, there is a risk that even small upward trends, especially those near the upper confidence bounds, 

could lead to adverse health effects over time (WHO, 2016). 

 

3.2.3 Nitrogen Dioxide (NO2) Trend 

Figure 3 presents the forecast for Nitrogen Dioxide (NO₂) concentrations through September 2024, using the 

Exponential Smoothing (ETS) model, a widely recognized time series forecasting technique embedded in 

Microsoft Excel. The ETS model, known for its ability to account for seasonality and trends, provides a 

reliable method for forecasting pollutant concentrations over time (Ahuti, 2015; López et al., 2019). 

Beginning with the observed value in September 2023 (0.1459), the forecast provides monthly projections 

for NO₂ concentrations from October 2023 to September 2024. Each forecasted value is accompanied by 

lower and upper confidence bounds, offering a measure of the uncertainty inherent in the predictions. The 

forecast indicates a steady upward trend in NO₂ concentrations over the forecast period, with values gradually 

increasing month by month. This trend may be influenced by seasonal factors, traffic patterns, and aviation-
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related activities at Nnamdi Azikiwe International Airport, as identified in prior studies on air pollution 

dynamics (Wiwanitkit, 2011; Kelishadi, 2012). 

 

 
Figure 3: Forecast for Nitrogen Dioxide (NO₂) 
 

The projected rise in NO2 concentrations is of particular concern given its known health impacts, including 

respiratory issues and cardiovascular diseases (WHO, 2015, 2016). NO2 is a major contributor to urban air 

pollution, and increases in its concentrations, even within the bounds predicted by the model, could exacerbate 

health risks, particularly for vulnerable populations (WHO, 2016). The relatively narrow range of the 

confidence bounds suggests that while the forecast is reliable, even slight deviations near the upper bounds 

could have significant public health implications. 

The gradual increase in NO2 concentrations, as forecasted, aligns with previous research indicating that 

airports and their surrounding areas are significant sources of nitrogen oxides due to aircraft emissions, 

ground operations, and associated traffic (Tyler et al., 2010). Additionally, weather patterns such as wind 

speed and direction play a key role in the dispersion of NO2 and other pollutants (López et al., 2019). The 

cardinal wind directions identified in earlier sections, particularly those from the southeast and south, may 

contribute to pollutant dispersion or accumulation in specific areas, further influencing local NO2 levels. 

The model's ability to forecast a gradual increase in NO2 concentrations through 2024 underscores the need 

for proactive environmental policies aimed at mitigating pollutant emissions. Without such interventions, the 

projected rise in NO2 could exceed safe thresholds, leading to deteriorating air quality in the vicinity of the 

airport. Implementing stricter regulations on aviation emissions and improving traffic management in 

surrounding areas could help curb the anticipated increase in NO2 concentrations (Wiwanitkit, 2011; 

Kelishadi, 2012). 

 

3.3. Impact of weather factors concentrations of these pollutants 

3.3.1 Model Performance Pseudo R-Square 

The Table 2 presents the Pseudo R-Square values for the ordinal regression models predicting the 

concentrations of Carbon Monoxide (CO), Sulphur Dioxide (SO2), and Nitrogen Dioxide (NO2) based on 

weather variables.  

Table 2: Pseudo R-Square 

Pseudo R-Square CO SO2 NO2 

Cox and Snell 0.682 0.708 0.561 

Nagelkerke 0.701 0.616 0.569 

McFadden 0.62 0.612 0.529 

Link function: Logit. 

Source: Field Survey, 2023 

 

For Carbon Monoxide (CO), the Cox and Snell Pseudo R-Square value is 0.682, indicating that approximately 

68.2% of the variance in CO concentration is explained by the weather variables in the model. The Nagelkerke 

Pseudo R-Square value is slightly higher at 0.701, suggesting a strong explanatory power of about 70.1%. 
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The McFadden Pseudo R-Square value is 0.62, which also indicates a substantial proportion of variance 

explained. These values suggest that the model is quite effective in explaining the variation in CO 

concentrations based on temperature, wind speed, and wind direction. Given the high levels of CO observed 

at the airport, it is crucial to consider its impact on both human health and operational efficiency. High CO 

concentrations can impair cognitive and physical performance, posing risks to airport staff and travelers. 

According to Grigorieva and Lukyanets (2021), exposure to high CO levels, especially combined with high 

temperatures, can exacerbate respiratory issues, increasing the risk of acute health problems. Therefore, 

implementing air quality monitoring systems and enhancing ventilation in high-traffic areas are essential 

precautionary measures to mitigate CO-related health risks. 

 

For Sulphur Dioxide (SO2), the Cox and Snell Pseudo R-Square value is 0.708, the highest among the three 

pollutants, indicating that 70.8% of the variance in SO2 concentration is explained by the model. The 

Nagelkerke Pseudo R-Square value is 0.616, suggesting a more moderate explanatory power. The McFadden 

Pseudo R-Square value is 0.612, supporting the notion that the model explains a significant portion of the 

variance in SO2 levels. The slightly lower Nagelkerke value compared to Cox and Snell might be due to the 

differences in how these measures adjust for the number of predictors and the sample size. SO2 exposure at 

the airport can lead to respiratory issues, particularly for individuals with pre-existing conditions such as 

asthma. According to Shen et al. (2021), SO2 concentrations are influenced by both emission sources and 

meteorological conditions. Precautions should include regular maintenance of emission control systems, 

ensuring compliance with air quality standards, and providing adequate health monitoring for those working 

in or frequently visiting areas with high SO2 levels. 

 

For Nitrogen Dioxide (NO2), the Cox and Snell Pseudo R-Square value is 0.561, indicating that 56.1% of the 

variance in NO2 concentration is accounted for by the weather variables. The Nagelkerke Pseudo R-Square 

value is 0.569, suggesting a similar level of explanatory power. The McFadden Pseudo R-Square value is 

0.529, which, while lower than the other two measures, still indicates that over half of the variance in NO2 

concentration is explained by the model. These values imply that the model is moderately effective in 

explaining NO2 concentrations. High NO2 levels at the airport can adversely affect respiratory health, 

particularly for vulnerable populations like children and the elderly (Cheng et al., 2021). To address this, it is 

important to implement air quality improvement measures such as controlling emissions from ground support 

equipment and ensuring that the airport’s air filtration systems are functioning optimally. Additionally, 

regular air quality assessments and timely public health advisories can help manage exposure risks. 

 

3.3.2 Model Parameter Estimates 

 

Table 3: Parameter Estimates for Ordinal Regression 
Variables  CO SO2 NO2 

β  Wald p-

value 

β  Wald p-

value 

β  Wald p-

value 

Temperature (C)  0.038 129.88 0.000 -0.032 32.163 0.000 0.008 5.948 0.015 

Wind Speed 0.001 1.636 0.201 -0.005 17.137 0.000 0.002 21.653 0.000 

Cardinal Wind 

Direction 

ESE 0.24 3.369 0.066 -0.904 24.257 0.000 0.731 34.238 0.000 

S 0.953 57.62 0.000 -0.61 13.021 0.000 -0.566 22.046 0.000 

SE 0.73 27.923 0.000 -0.726 12.954 0.000 -0.353 6.921 0.009 

SSE -0.145 1.308 0.253 -0.533 9.736 0.002 -0.152 1.563 0.211 

SSW 0a   0a   0a   

Source: Field Survey, 2023 

 

The fitted model with specific parameter estimates for each pollutant concentration (CO, SO2, NO2) is thus 

given below: 

 

For Carbon Monoxide (CO): 
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logit[ℙ(𝑌CO ≤ 𝑗)] = 𝛼𝑗 + 0.038 ⋅ Temp + 0.001 ⋅ Wind Speed + 0.240 ⋅ ESE + 0.953 ⋅ S + 0.730 ⋅ SE −

0.145 ⋅ SSE          (2) 

For Sulfur Dioxide (SO2):  

logit[ℙ(𝑌SO2
≤ 𝑗)] = 𝛼𝑗 − 0.032 ⋅ Temp − 0.005 ⋅ Wind Speed − 0.904 ⋅ ESE − 0.610 ⋅ S − 0.726 ⋅ SE −

0.533 ⋅ SSE          (3) 

For Nitrogen Dioxide (NO2): 

logit[ℙ(𝑌NO2
≤ 𝑗)] = 𝛼𝑗 + 0.008 ⋅ Temp + 0.002 ⋅ Wind Speed + 0.731 ⋅ ESE − 0.566 ⋅ S − 0.353 ⋅ SE −

0.152 ⋅ SSE          (4) 

 

Where: 

- SSW is the reference category for the wind direction, hence it is omitted from the model. 

- Each 𝛽 coefficient shows the effect of the corresponding predictor on the likelihood of the pollutant 

concentration being in a particular category. 

- The significance of each predictor is indicated by the p-values (predictors with p-values < 0.05 are 

considered statistically significant). 

 

3.4 Discussion of Findings 

 

Starting with Carbon Monoxide (CO), the analysis reveals that temperature has a significant positive effect 

on CO concentration, with a beta coefficient (β) of 0.038 and a p-value of 0.000. This finding aligns with the 

study by Grigorieva and Lukyanets (2021), which suggests that elevated temperatures can enhance chemical 

reactions and emissions from various sources, thus increasing CO levels. However, wind speed does not have 

a significant effect on CO concentration (β = 0.001, p-value = 0.201), indicating that variations in wind speed 

alone are insufficient to influence CO levels significantly. Regarding wind direction, winds from the south 

(S) and southeast (SE) significantly increase CO concentrations, with beta coefficients of 0.953 and 0.73, 

respectively, both with p-values of 0.000. These findings are supported by Chen et al. (2021), who observed 

that specific wind directions can lead to higher pollutant levels due to the accumulation of emissions in 

particular areas. Conversely, winds from the east-southeast (ESE) show a positive but marginally non-

significant effect (β = 0.24, p-value = 0.066), while south-southeast (SSE) winds have a non-significant 

negative effect (β = -0.145, p-value = 0.253). The south-southwest (SSW) direction serves as the reference 

category. 

 

For Sulphur Dioxide (SO2), temperature has a significant negative impact, with a beta coefficient of -0.032 

and a p-value of 0.000. This suggests that as temperature increases, SO2 levels decrease, possibly due to 

enhanced dispersion and dilution at higher temperatures, consistent with the findings of Shen et al. (2021). 

Wind speed also significantly affects SO2 concentrations negatively (β = -0.005, p-value = 0.000), implying 

that higher wind speeds facilitate the dispersion of SO2, reducing its concentration. This observation is 

corroborated by research from Wiwanitkit (2011), which highlights the role of wind in dispersing air 

pollutants. Wind direction plays a crucial role as well. Winds from the ESE significantly reduce SO2 levels 

(β = -0.904, p-value = 0.000), as do winds from the south (β = -0.61, p-value = 0.000), southeast (β = -0.726, 

p-value = 0.000), and south-southeast (β = -0.533, p-value = 0.002). These findings suggest that winds from 

these directions help disperse SO2, lowering its concentration compared to the reference wind direction 

(SSW), supporting the observations made by Kelishadi (2012). 

 

In the case of Nitrogen Dioxide (NO2), temperature again shows a significant positive effect (β = 0.008, p-

value = 0.015), indicating that NO2 levels increase with rising temperatures. This aligns with the study by 

Cheng et al. (2021), which found that higher temperatures can lead to increased NO2 levels due to enhanced 

photochemical reactions. Wind speed, on the other hand, has a significant positive effect on NO2 

concentrations (β = 0.002, p-value = 0.000), suggesting that higher wind speeds might contribute to increased 

NO2 levels, possibly due to the transportation of NO2 from other areas, as discussed by Ahuti (2015). 

Regarding wind direction, winds from the ESE significantly increase NO2 concentrations (β = 0.731, p-value 

= 0.000), while winds from the south (β = -0.566, p-value = 0.000) and southeast (β = -0.353, p-value = 0.009) 

significantly decrease NO2 levels. Winds from the south-southeast (SSE) have a non-significant effect (β = -

0.152, p-value = 0.211), with the south-southwest (SSW) serving as the reference. These results indicate that 

wind direction can have a significant impact on NO2 levels, consistent with findings by Tyler et al. (2010) on 

the influence of atmospheric conditions on pollutant distribution. 
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4.0. Conclusions 

 

This study revealed varying patterns in cardinal wind direction proportions, temporal trends in pollutants such 

as Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), and Carbon Monoxide (CO), and the influence of weather 

factors on these pollutant concentrations. 

Among the pollutants studied, CO was found to have the highest concentration variability, influenced 

significantly by temperature and specific wind directions. The positive relationship between temperature and  

 

CO levels (β = 0.038, p-value = 0.000) suggests that higher temperatures can enhance emissions from sources 

like aircraft engines (Grigorieva & Lukyanets, 2021). Aircraft exhaust, known for its CO emissions, is a major 

contributor at airports, which aligns with findings by Kelishadi (2012) regarding CO levels around aviation 

hubs. 

 

SO2 levels were also notably affected by wind direction, with significant reductions in SO2 concentrations 

observed with winds from directions like ESE, S, SE, and SSE. The negative impact of temperature on SO2 

levels (β = -0.032, p-value = 0.000) suggests enhanced dispersion and dilution at higher temperatures (Shen 

et al., 2021). This could indicate that SO2 emissions, possibly from ground-based operations or industrial 

activities near the airport, are influenced by weather patterns. 

 

NO2 levels showed significant variability with temperature (β = 0.008, p-value = 0.015) and wind speed (β = 

0.002, p-value = 0.000), which could be due to the complex interaction of NO2 emissions from both aircraft 

and other sources (Cheng et al., 2021; Ahuti, 2015). The significant increase in NO2 concentrations with ESE 

winds further underscores the role of specific wind directions in pollutant dispersion. 

 

4.1 Recommendation  

Given these findings, the study therefore suggests the following recommendations to the airport authority: 

o Implement comprehensive air quality monitoring systems that integrate weather data with pollutant 

measurements. This will enable real-time tracking of pollutant levels and their relationship with 

weather conditions, facilitating better decision-making in air quality management (Tyler et al., 2010). 

o Develop weather-based emission control strategies. More like a stricter regulation on aircraft 

emissions during periods of high temperatures could help mitigate CO levels, as aircraft are 

significant sources of CO at airports (Wiwanitkit, 2011; Grigorieva & Lukyanets, 2021). 

o Consider operational adjustments to reduce SO2 emissions, particularly during unfavorable wind 

conditions. Such as optimizing ground operations and using cleaner technologies could help decrease 

SO2 concentrations (Kelishadi, 2012). 

o Launch public awareness campaigns to educate individuals about the impact of weather patterns on 

air quality. Informing the public about actions they can take to protect their health during periods of 

high pollutant levels will be beneficial (Cheng et al., 2021). 
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