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ABSTRACT 
 

Medium resolution satellite imageries are prominently used in bathymetry estimation due to high cost of 

accessing high resolution images and obtaining in-situ data. In this study, Landsat-8 and Sentinel-2 medium 

resolution satellite images were explored in estimating bathymetry for a section of Imo River with 

underlying aim of evaluating their performances. Lyzenga log linear and Stumpf log ratio empirical models 

were adopted. Image pre-processing involved atmospheric correction, cloud masking, sun glint removal 

and low pass filtering. Comparison with field-based reference depths showed that deepest estimated depth 

from both satellites images was approximately 10 m compared to 12 m depth obtained from field-based 

sounding. Coefficient of determination shows that Landsat-8 averagely estimated depths by 57% while 

Sentinel-2 showed 46% performance. Sentinel-2 had the highest and lowest root mean square error of 1.9 

and 1.5 based on Lyzenga and Stumpf model respectively, while Landsat-8 had root mean square error of 

1.7 and 1.8 from both models. Fidelity of Sentinel-2 derived bathymetry was greatly impacted by cloud and 

radiometric effects despite its high spatial resolution and applied corrections. Results of the study revealed 

that environmental conditions and water body properties have significant impact in satellite bathymetry 

estimation from medium resolution images. 
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1.0. Introduction 

Innovation in space remote sensing and expanding satellite technologies have led to availability of various 

satellite data for bathymetry estimation. Satellite sensors yield imageries of different spatial resolution and 

spatial coverage, have inherent benefits and limitations. They are also influenced by terrestrial factors and 

water body properties (e.g. transparency, sediments, seabed rugosity), parameters of measuring device, 

platform dynamics and operational techniques. The choice of any or a combination of imagery is determined 

by volume of bathymetric information required, image spatial resolution, nature and extent of study area, 

coverage and cost (Poti et al., 2012; Dierssen and Theberge, 2014).             

At different times and for various study locations, performance of satellite images, estimation parameters as 

well as the estimation algorithm (model) have been undertaken (Casal et al., 2018; Cahalane et al., 2019; 

Ahola et al., 2020; Evagorou et al., 2022). Given recent development in sensors capability, improved 

resolution and data availability, optical satellite data have increasingly been adopted for bathymetry mapping 

of inland waters. It is reasoned that optical satellite imagery of various resolutions has capabilities for 

derivation of bathymetry with reasonable accuracy depending on the nature of the water body, seabed 

characteristics and study context.  However, bathymetry accuracy from optical satellite imagery also depend 

on spatial resolution, cloud cover, presence of ice, signal transmissivity or visibility in water column, sun 

elevation angle at time of acquisition as well as date of image acquisition (Casal et al., 2018; Ahola et al., 

2020). Literature on studies that assess image channel most useful for bathymetry extraction, effect of spatial 

resolution on estimated bathymetry as well as impact of acquisition geometry on bathymetry abound (Lee, 

2012; Tang and Pradhan, 2015). Studies also addressed the issue of estimation parameters whereby specific 

mailto:*ogechi.ekwem@unn.edu.ng
https://doi.org/10.36263/nijest.2023.03.0423


Nigerian Journal of Environmental Sciences and Technology (NIJEST) Vol 7, No. 3 October 2023, pp 435 - 451 

Ekpa et al., 2023                                                                                                                                         436 

predictors were used to check specific satellite data performance. El-Sayed (2018) tested the quality of image, 

calibration procedures and performance of bathymetry estimation algorithm. Water quality parameters like 

turbulence, optical conditions of turbidity, bottom material and suspended sediment (Kimeli et al., 2018; 

Zandbergen, 2020) and depth of penetration (Ekpa and Ojinnaka, 2018) were considered for accurate 

bathymetry estimation from optical satellite data. 

Categorically, Ahola et al. (2020) assessed bathymetric mapping output of imageries with varying spatial 

resolutions (Landsat-8, PlanetScope, Pléiades-1, Sentinel-2, SPOT, WorldView-2) and reported that high 

resolution images yielded higher accuracy and produced fine details on larger scale charts. Jaelani et al. 

(2019) reported that Landsat 8 and Sentinel-2A could not yield bathymetry for areas shallower than 8 m and 

deeper than 13 meters respectively due to poor resolution. Study based on the use of low-resolution Sentinel-

2 (10 m) and Landsat-8 (30 m); medium resolution PlanetScope (5 m); and high resolution Pléiades (2 m) 

and Worldview-2 (1.31 m) revealed that low resolution datasets gave reduced detail of seabed features. As 

reported, depths less than 12 m had low accuracy of information representation due to limited sensing 

capability while results in mid-depth ranges (4–10 m) gave a higher accuracy with greater details as a result 

of the high mapping power of optical sensor within this region (Ahola et al., 2020). The study also revealed 

that images with more spectral bands offer better mapping potentials even for waters with high turbidity.  

Given that satellite images covering coastal regions and areas of massive water body are usually affected by 

coastal climatic factors such as cloud, wind, and waves including inherent optical and apparent optical 

properties, there is need to evaluate the suitability of freely available medium resolution satellite image in 

estimating inland waterway bathymetry. Inland waterways are “the most accessible and important resource” 

among the water resources available to man (Revenga and Kura, 2003). Inland waterways are navigable body 

of water (rivers, lagoons, canals, lakes, watercourses, inlets and bays etc.) located within a country’s territory, 

suitable for navigation. They are laden with many economic significances including fishing, water transport, 

oil and gas exploration, recreation, eco-tourism, industrial water supplies, and irrigation (Revenga and Kura, 

2003; Chukwuma, 2014; Said et al., 2017). Bathymetry of this ecosystem will facilitate sustainable 

development and improvements within the fringes (Vanderstraete et al., 2003; Chukwuma, 2014; 

International Hydrographic Organization-IHO, 2019). As ecologically dynamic environment, inland 

waterways are usually impacted by turbidity and sediment through human related activities, floods, 

vegetation, wrecks, etc., and parameters for bathymetry estimation should be selected to suit the peculiarity 

of the ecosystem. A performance assessment of Landsat-8 and Sentinel-2 medium resolution satellite images 

freely available and commonly used for bathymetry estimation was undertaken. This study covers a section 

of Imo River - an inland waterway in South-South Nigeria with sparse hydrographic data. 

2.0 Methodology 

 

2.1 Study Site  
 

Imo River is one of the major rivers in Nigeria and an inland waterway in the south. With the source at Udi 

Hill, Imo State, Imo River drains an area of 8,288 km2 and cover a floodplain (wetland) of 26,000 hectares. 

The river flow across four states (Imo, Abia, Rivers and Akwa Ibom) and empties into Atlantic Ocean through 

the Bight of Bonny. Imo River is a major landmark and serves as natural boundary between Akwa Ibom and 

Rivers States in South-South Nigeria. The river lies between Latitudes 4° 30'N and 5° 00'N and Longitudes 

7° 10'E and 7° 45'E with a total length of 225.3 km (Oyo-Ita and Oyo-Ita, 2017).   
 

Imo River lies within equatorial rain forest belt with characterized stormy rains in the rainy season (April to 

October) and mild weather conditions during dry season (November to March). The region has high relative 

humidity throughout the year (Amadi et al., 2016). Temperature ranges between 26.6° C in the rainy season 

to 31.6° C in the dry season (Okorie and Nwosu, 2014). The River ecosystem is estuarine swamp forest of 

nipa palm, shrubs, and mangrove vegetation. Imo River lies within Imo drainage system and underlain on 

Benin groundwater system and has an estuarine ecosystem with relative level of turbidity due to high sediment 

load. The section of focus was the lower course with Longitudes 07° 30' 30'' and 07° 33' 00''E and between 

Latitudes 04° 35' 00'' and 04° 32' 00''N (Figure 1). The river section is located within the borders of Akwa 

Ibom (to the East) and Rivers State (on the West).  

   



Nigerian Journal of Environmental Sciences and Technology (NIJEST) Vol 7 No. 3 October 2023, pp 435 - 451 

 

Ekpa et al., 2023               437 

 

 
Figure 1: Image Map Showing Study Site  

 

 

2.2 Data Acquisition  
 

Two sets of medium resolution satellite images, Landsat-8 OLI and Sentinel-2 MSI were used for bathymetry 

estimation. Landsat-8 OLI images included level-1 (L1TP) and level-2 (L2SP) of February 18, 2021 and 

level-2 image of December 19, 2021. These were downloaded from https://earthexplorer.usgs.gov based on 

187/057 path/row World Reference System (WRS).  Two Sentinel-2A level- 2 (MSIL2A) images captured 

on January 24, 2021 and December 20, 2021 used were downloaded from https://scihub.copernicus.eu.  

Specification for image download included full coverage of the river section, clarity and minimum cloud 

cover. Images acquired in dry season where climatic conditions were similar to the period of sounding data 

acquisition were selected. These are shown in figure 2 (i) –(v).  

 

 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
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A  (i) Sentinel-2A of Jan. 24, 2021      (ii)   Sentinel-2A of Dec. 20, 2021 

 

          
B (iii) Landsat-8 level 2 image (iv) Landsat-8 level 2  image       (v) Landsat-8 level 2       

           image of Feb. 18, 2021           of Dec. 19, 2021                              of Dec. 19, 2021                                          
 

Figure 2 (i) –(v): Satellite Images Used in the Study  

 

Two of the images (with Asterix in table 1) were acquired at the onset of dry season while others (marked a, 

b, c) were sensed in the middle of dry season period. Influence of tide on the dates and time () of satellite 

image acquisition was noted and presented in table 1 while characteristics of selected image bands used are 

presented in table 2. 

 

Table 1:  Predicted Water Levels Based on Image Acquisition Date 
Satellite sensor Satellite data Date of image 

acquisition  

Time of image 

acquisition (GMT) 

Predicted tide 

(m) 

Sentinel-2 MSI *S2A_MSIL2A 24/01/2021 12:07:07 1.005 
a S2A_MSIL2A  20/12/2021 12:03:47 0.465 

 

Landsat-8 OLI 

bLC08_L1TP 19/12/2021 09:45:31.4714750Z 0.831 

*LC08_L2SP 18/02/2021 09:45:15.3232880Z 2.007 
cLC08_L2SP 19/12/2021 09:45:31.4714750Z 0.831 

GMT= Greenwich Mean Time 

 

Table 2: Characteristics of Satellite Image  
Sentinel-2 Landsat-8 

Bands Wavelength (μm) Resolution Bands Wavelength (μm) Resolution 

02-Blue 0.448 – 0.546 10 m 2-Blue 0.450 – 0.515 30 m 

03-Green 0.538 – 0.583 10 m 3-Green 0.525 – 0.600 30 m 

04- Red 0.646 – 0.684 10 m 4- Red 0.630 – 0.680 30 m 

8A- Broadband 

Near infrared 

0.763 – 0.908 10 m 5- Near infrared 0.845 – 0.885 30 m 

Source: El-Mewafi et al. (2018); Zandbergen (2020) and Schmitt (2020) 

 

Field data used for calibration of estimation model and validation of estimated bathymetry was obtained on 

January 24, 2021 using South SDE-28 Single Beam Echosounder integrated with Hi Target DGPS GNSS 

Receiver. The echo sounding measurement was carried out within the same year of image acquisition (see 

table 2 for reference). 
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2.3 Methods  

The processes carried out included image pre-processing; application of bathymetry algorithm and depth 

estimation; and validation of satellite derived bathymetry. 

 

2.3.1 Image pre-processing  

i. Atmospheric and radiometric correction: Atmospheric correction is the removal of scattering and  

absorption effects caused by particles and other matters present in the atmosphere that negatively impacts on 

image at the time of acquisition (Gabr et al., 2020; Hashim et al., 2021). It also involves the ‘conversion of 

relative radiance into calibrated reflectance’ (Muzirafuti et al., 2020). For Sentinel-2 and Landsat-8 level-2 

images used, atmospheric correction was not applied as they were downloaded geometrically and 

radiometrically rectified, atmospheric correction were only applied on Landsat-8 Level-1C product.   Case 2 

Regional Coast Colour processor (C2RCC), available on Sentinel Application Platform (SNAP) toolbox, 

provided by European Space Agency was applied. C2RCC is an image-based atmospheric correction 

algorithm that uses inputs from pre-calculated look up tables usually derived from the image (Casal et al., 

2018; Caballero and Stumpf, 2020). C2RCC is water focused processor with the functionality of atmospheric 

disturbances, sun glint and adjacency effect (Casal et al., 2019). This processor is embedded in SNAP as 

C2RCC S2-MSI Processor.  
        

Radiometric correction was applied to correct errors in image radiance and convert image digital numbers to 

spectral radiance. Radiometric corrections applied included normalization, low pass filtering, cloud and 

sunglint correction. Normalization is the process of scaling pixel values in DN to surface reflectance by 

applying a scale factor. Surface reflectance is a unitless physical quantity of value usually between 0.0 and 

1.0 (S2-PDGS-MPC-L2A-PFS-V14.2, 2017). For Landsat-8 level-1 and Level-2 image, the scale factors were 

0.0001 and 0.0000275 + -0.2 respectively (LSDS-1619, 2022). These were applied to the images before 

extracting water pixels for bathymetry estimation.  Normalization of Sentinel-2 MSI Level-2A was by 

applying the quantization value of 10000 based on the relationship; SR = DN / 10000 (S2-PDGS-MPC-L2A-

PFS-V14.2, 2017).  
 

Low pass filtering is the process of smoothening anomalous cells by passing 3 × 3 kernel size filter over the 

image bands. This was executed using ‘Spatial Analyst Tools’ (Neighborhood – Filter) in ArcGIS. Cloud 

mask correction was applied only on Sentinel-2 image of January 24, 2021. Clouds act as artefacts on the 

image and obstruct reflection from the river from reaching the satellite sensor (Zandbergen, 2020). Masking 

of cloud was carried out alongside with separation of water body from land based on NIR threshold method. 

Sunglint correction was applied to Sentinel-2 of January 24, 2021 and December 20, 2021 and Landsat-8 of 

February 18, 2021 using Hedley et al. (2005) method as expressed in Equation 1. This method works on the 

principle that samples or selected pixels in the visible band are included in ‘a linear regression with NIR 

values. Established linear regression among image pixels as defined by the slope of the regression line for a 

particular band was used to predict the brightness for other pixels (Holman, 2020). The generalized algorithm 

to correct all image pixels of sun glint in an image band ‘i’ according to Hedley et al. (2005) is given:   

𝑅′
𝑖 = 𝑅𝑖 − 𝑏𝑖 (𝑅𝑁𝐼𝑅 − 𝑀𝑖𝑛𝑁𝐼𝑅)                  (1) 

Here, R'i is sun glint-corrected pixel, Ri is pixel value in visible band i, bi is regression slope for visible band 𝑖, 
RNIR is pixel value of NIR band while MinNIR is minimum reflectance value of NIR band. A polygon was 

created over the NIR band. After cloud masking, the masked-out portions on the Sentinel image were filled 

with corresponding values of sentinel 2 level-2 acquired on 20 December, 2021. For all the images, float and 

low pass filter processes were applied to each band to remove speckle noise and enhance the radiance of the 

pixels for precise feature extraction (GEBCO Cookbook, 2019; Saeed et al., 2021).  This was done before 

separating water pixels from land. 

 

ii. Spatial sub-setting and separation of water body from land: Prior to spatial filtering, image   

bands were clipped to area of interest to reduce processing time and storage space. Subsequently, pixels 

containing only water or covering the study area was masked out for further processing. This usually 

eliminates contamination of water pixels by land and other objects. NIR threshold method adopted in GEBCO 

Cookbook (2019) was used. A line profile stretching from land into the water portion of each image was 

created over NIR band. A graph of the line profile was then created to display the change in reflectance values 

of pixels along the line. Since pixel values of land and cloud mask had higher reflectance than water pixels, 

there was a sharp drop in the profile line at the land/water boundary. The value at this point was recorded as 

the threshold value. 
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 Next, this value was used as a condition using the “Set Null” tool of ArcGIS to separate water pixels from 

others. NoData value was assign to pixels with reflectance higher than the threshold (e.g. 0.08 for Sentinel-

2). Figure 3 presents the profile line over NIR band, profile graph and ‘Set Null’ dialog box in ArcGIS. This 

procedure was repeated for all images to extract water pixel reflectance.  

 

    
Figure 3: Profile Line Over NIR Band, Profile Graph and ‘Set Null’ Dialog Box in ArcGIS Adopted  

  in Masking Out Cloud and Land from Water Body 

   

2.3.2 Application of bathymetry algorithm and depth estimation 
 

Bathymetry algorithm used in this study were the Stumpf et al. (2003) log ratio and Lyzenga et al. (2006) log 

linear models. Application of bathymetry algorithm and depth estimation involved calculation of relative 

bathymetry using different band reflectance, regression analysis, computation of SDB and vertical 

referencing. For effective performance and suitability evaluation of image bands in bathymetry estimation 

within the context of the study, bands blue, green and red as well as the combination of the three bands were 

adopted. This was due to the fact that although blue and green bands are strongly advocated and widely used 

for bathymetry estimation (Traganos et al., 2018; Amrari et al., 2021), in a separate study, Khondoker et al. 

(2017) and Liu et al. (2021) portrayed that short wavelength bands (blue and green) are not very appropriate 

for turbid waters due to their sensitivity to inherent optical properties (IOP). Besides, Khondoker et al. (2017) 

advocated that red and infrared long wavelength bands are ideal for bathymetry estimation while short wave 

infra-red 1 (band 6) of Landsat-8 was also recommended for bathymetry estimation (GEBCO Cook Book, 

2019). In a later study, Arabi et al. (2020) proved that red band strongly correlate with water depth and not 

very sensitive to IOPs.  
 

i. Bathymetry estimation based on Stumpf model: this method works on the assumption that long 

wavelengths are attenuated more rapidly in water with increase depth than short wavelengths. And that the 

ratio between short wavelength band and long wavelength band will increase with changes in depth than by 

bottom albedo. Natural logarithmic transformation of the ratio will linearize the relationship as a function of 

depth (Rossi et al., 2019). Stumpf model is more stable and is effective over turbid waters and water bodies 

of variable bottom (Jagalingam et al., 2015). Stumpf model is expressed as: 
 

 𝑍 =   𝑚1   
ln(𝑛∗ 𝑅𝑤  (𝜆𝑖))

ln(𝑛∗𝑅𝑤  (𝜆𝑗))
−  𝑚𝑜             (2) 

Z = satellite derived bathymetry; Rw = observed water radiance; λi,j  = wavelength bands; m0 = offset value for zero depth 

(when Z = 0) ; m1 = tunable constant to scale the ratio to depth; n = fixed constant. In the present study, the two models 

were insensitive to values of n and thus the n constant was not applied. 
 

Different band ratios were calculated to obtain optimum band combination for retrieving bathymetry. These 

included B2/B3, B2/B4 and B3/B4. Taking the natural logarithm of the band ratios gave relative bathymetric 

(RB) values. RB outputs (raster values) were employed in least squares regression analysis with 30% of 

randomly selected reference depths to obtained regression coefficients (m1 and m0). Satellite derived 

bathymetry SDB was obtained by applying the coefficient to RB according to equation (Equation 2). 

Predicted water level was applied on SDB according to date and time of image acquisition for vertical 

reference to MWL datum.  
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ii. Bathymetry estimation based on Lyzenga model: Lyzenga model assumes that water surface reflectance is 

an exponential function of depth and that by taking a logarithmic transformation; a linear relationship could 

be established between surface reflectance and water depth. Image radiance are linearized by natural 

logarithm while coefficients are used to train the model through linear and multiple least square regression 

least square (Traganos et al., 2018; Gabr et al., 2020; Zandbergen, 2020). The generalized form given by 

Gabr et al. (2020) and expressed by Equation 3 was adopted. 
 

   𝑍 = 𝑎0   +  ∑ 𝑎𝑖  
𝑛
𝑖 𝑋𝑖                            (3)  

 

From equation 3, 𝑋𝑖    = ln[𝑛𝑅𝑖(𝜆𝑖)]          (4) 
 

Equation 4 represent natural log of radiometric and atmospheric corrected image bands. Linear regression 

was applied to single bands (2, 3, and 4) while multiple regression was used for multi-band combinations (2-

3, 2-4, 3-4, and 2-3-4). 

 

From equations 3 and 4, Z = satellite-derived bathymetry; Xi = log transformed reflectance of band i; R(λi) = 

observed reflectance in i band; 𝑎0  and 𝑎𝑖 = regression coefficients (intercept and slopes). In equation 3, n 

represent number of image bands adopted in bathymetry estimation. For equations 4, n denote the tuning 

constant. 

 

2.3.3 Validation of satellite derived bathymetry 
 

To validate estimated depths, randomly selected 70% of the 1969 Single Beam Echo Sounding (SBES) depths 

were used. Corresponding depth values of SBES and Satellite-Derived Bathymetry (SDB), were extracted 

and compared based on root mean squared error (RMSE), lowest depth, mean depth and deepest depth values, 

and coefficient of determination (R2).  
 

3.0 Result and Discussion 
 

Results of the bathymetry estimation process are presented in this section. Figures 4 to 8 are depth models 

depicting the bathymetry based on different band ratios and band combinations from the five satellite images. 

Bathymetry from Landsat-8 level-2 of February 18, Landsat-8 level-1 and Landsat-8 level-2 of December 19, 

2021 are presented in figures 4, 5 and 6 respectively. Figures 7 and 8 respectively depict results obtained from 

Sentinel-2 level-2 images of January 24 and December 20, 2021.  
 

 
Figure 4A: Estimated Bathymetry from Landsat-8 level-2 of February 18, 2021 Based on Stumpf Model 

 

Figure 4A shows bathymetry generated from Landsat-8 level-2 of February 18, 2021 based on Stumpf’s 

model. Estimated depth ranges were far beyond the in-situ depths (-3.73 m to 27.28 m) for the sounded 

location. However, the best SDB was generated by the green/red band ratio [Figure 4A (iii)]. Although depths 

in the north section were correctly derived as deeper depths (light blue), these values were far beyond the 

reference depths. 
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Figure 4B: Estimated Bathymetry from Landsat-8 level-2 of February 18, 2021 Based on Lyzenga Model 

 

In figure 4B, estimated bathymetry based on Lyzenga’s model from Landsat-8 level-2 of February 18, 2021, 

shows that the river is deeper (deep blue) within the central portion of the study area. Based on the in-situ 

data, this result is incorrect. Although part of the middle section is deep, the fringes are shallow, and not as 

portrayed in figures 4B (i), (iv), (v), (vi) and (vii).  Nevertheless, figures 4B (ii) and (iii) have values that 

correlate fairly with in-situ depths, but, values within the meandering section (neck-like portion in the north 

region) were underestimated. Generally, depths above extinction depth based on this image (Landsat-8 level-

2 of February 18, 2021) were under estimated by 12.31 m while depth within the extinction value were over 

estimated by 7.04 m. This was applicable to all estimated depths from Stumpf’s (Figure 4A) and Lyzenga’s 

models (Figure 4B). 

 

 
Figure 5A: Estimated Bathymetry from Landsat-8 level-1 of December 19, 2021 Based on Stumpf’s Model  

 

Figure 5A is estimated bathymetry from Landsat-8 level-1 of December 19, 2021 (L1TP) using Stumpf’s 

model. The figure (5A) revealed that shallow depths (orange and red colour) are obtainable within the fringes 

of the river. This correspond with in-situ depths except for results obtained from the green/blue ratio [Figure 

5A (i)], which extends shallow depths into regions which are naturally deep. This result [Figure 5A (i)] 

underestimated shallow depths by about 9.00 m and overestimated deeper depths by about 10 m.  

However, bathymetry from blue/red ratio [Figure 5A (ii)] and green/red ratio [Figure 5A (iii)] correlated 

better with in-situ depths. Since blue/red ratio [Figure 5A (ii)] produced depths deeper than the green/red ratio 

[Figure 5A (iii)], it was adjudged the best from the satellite data.   
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Figure 5B: Estimated Bathymetry from Landsat-8 level-1 of December 19, 2021 Based on Lyzenga Model    

  

 Figure 5B is a graphical representation of bathymetry generated from Landsat-8 level-1 of December 19, 

2021 based on Lyzenga algorithm from different band combinations. Figure 5B (iii) gave the optimum results 

as region of shallow depths (orange and red) clearly portray what is obtainable in the river. Figures 5B (i), 

(iv), (v) and (vii) present shallow depths as being deep (blue colour) contrary to field fact.  For figure 5B (ii), 

shallow depths were underestimated by about 11 m and deeper depths over estimated by about 10 m. 

 

 
Figure 6A: Estimated Bathymetry from Landsat-8 level-2 of December 19, 2021 Based on Stumpf Model 

 

Bathymetry estimated using Landsat-8 level-2 of December 19, 2021 (L2SP) presented in figure 6A revealed 

that result from green/red band ratio [Figure 6A (iii)] was the optimum output as it correlated with in-situ 

depths. Although the depths were generally underestimated by about 3 m for deeper depths (blue colour) and 

0.6 m for shallow depths (red colour), it was better than others [Figures 6A (i) and (ii)].  The blue/green ratio 

produced the worst output as shallow region (South-West) was estimated as deep waters (blue colour) [Figure 

6A (i)]. 
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Figure 6B: Estimated Bathymetry from Landsat-8 level-2 of December 19, 2021 Based on Lyzenga Model  

 

Results based on Lyzenga’s model from Landsat-8 level-2 of December 19, 2021 (L2SP) presented in figure 

6B revealed that outputs from bands 2, 3 as well as bands 23, 24 and 234 combination were noisy and at 

variant with in-situ depths. Except for band 4 [Figure 6B (iii)] which produced fair output where deeper 

depths were underestimated by 4.63 m. 

 

 
Figure 7A: Estimated Bathymetry from Sentinel-2 level-1 of January 24, 2021 Based on Stumpf Model  

 

 
Figure 7B: Estimated Bathymetry from Sentinel-2 level-1 of January 24, 2021 Based on Lyzenga Model  
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Figure 7A is the estimated bathymetry from Sentinel-2 level-2 of January 24, 2021 using Stumpf   et al. 

(2003) ratio model. It shows that output from the satellite were generally noisy and ill-conditioned as the river 

was portrayed to be generally very shallow (red colour) contrary to sounding result and field-based findings.  

For Lyzenga’s linear model, the output from Sentinel-2 Level-2 of January 24, 2021 (Figure 7B), indicated 

that only very minimal portions of the river were shallow (orange and red), while a vast section were deep 

(sky blue and deep blue). Regions where cloud were masked out (and filled with pixels from Sentinel-2 of 

December 20, 2021) generally gave shallow depths. 

 

 
Figure 8A: Estimated Bathymetry from Sentinel-2 level-2 of December 20, 2021 Based on Stumpf Model  

 
 

 
Figure 8B: Estimated Bathymetry from Sentinel-2 level-2 of December 20, 2021 Based on Lyzenga Model 

 

 Figure 8A revealed bathymetry depth ranges between -2.58 and 15.21 m from Sentinel-2 level-2 of December 

20, 2021 which fairly correlate with in-situ depths. However, the blue/green ratio [Figure 8A (i)] gave noisy 

output with no clear distinction between points of average depth of 7.68 to 8.77 m (sky blue) and low depth 

of 5.73-7.67m (lemon shade).  Figure 8A (iii) gave a better presentation of the river and was marked as the 

best output from Sentinel-2 level-2 of December 20, 2021. Estimated bathymetry from Sentinel-2 level-2 of 

December 20, 2021 based on Lyzenga model (Figure 8B) shows that the outputs were generally noisy which 

could be attributed to the effect of sunglint and cloud at the time of image acquisition. There were no distinct 

depth variations, except for result from the red band (4) [Figure 8B (iii)]. Comparatively, regions of low depth 

values based on in-situ data were estimated as deep waters, while region of deep waters were estimated as 

shallow depths.  
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Results from Landsat-8 level-2 of February 18 and Sentinel-2 Level-2 of January 24, 2021 were ill 

conditioned and therefore not considered for further analysis.  Whereas, bathymetry estimated from Landsat-

8 level-1 of December 19, 2021 (L1TP), Landsat-8 level-2 of December 19, 2021 (L2SP) and Sentinel-2 

level-2 of December 20, 2021 (MSIL2A) were adjudged more consistent and reliable.  Statistical and visual 

analysis presented showed that for Stumpf model, the optimum results from Landsat-8 level-2 of December 

19, 2021 and Sentinel-2 level-2 of December 20, 2021 were from the green/red band ratio [Figure 6A (iii) 

and Figure 8A (iii) respectively]. Whereas for Landsat-8 level-1 of December 19, 2021, the blue/red ratio 

yielded the best result [Figure 5A (ii)]. For Lyzenga model, the optimum results were obtained from red band 

for all the satellite data [Figure 5B (iii), Figure 6B (iii), and Figure 8B (iii)]. Statistics of these results were 

adopted and further evaluated based on the research objectives. Extracted depth information were exported 

into Excel spreadsheet and appropriate formulae used to execute the statistical analysis. Results are presented 

in tables 3, 4, and 5. 

 

Table 3: Statistics of Landsat L1TP Bathymetry 
 SDB -blue/green SDB-blue/red SDB-green/red SDB-red 

RMSE 2.5 1.7 2.1 1.8 

Lowest Residual  -5.24 -0.27 0.91 0.42 

Highest Residual 6.87 1.96 1.93 2.41 

Lowest depth (m) -9.86 -2.47 -1.72 -3.41 

Highest depth (m) 16.31 9.51 9.38 8.76 

 

Table 4: Statistics of Landsat L2SP Bathymetry 
 SDB -blue/green SDB-blue/red SDB-green/red SDB-red 

RMSE 3.1 2.4 1.8 1.7 

Lowest Residual  -1.61 -2.44 -2.54 -2.32 

Highest Residual 9.36 8.23 6.63 5.56 

Lowest depth (m) -1.49 -1.52 -1.79 -3.70 

Highest depth (m) 8.54 9.3 9.96 8.33 

 

Table 5: Statistics of Sentinel MSIL2A Bathymetry 
 SDB -blue/green SDB-blue/red SDB-green/red SDB-red 

RMSE 2.7 1.5 1.5 1.9 

Lowest Residual -6.23 -1.04 1.41 0.83 

Highest Residual 10.61 5.36 3.34 5.44 

Lowest depth (m) -3.71 -2.57 1.96 -5.29 

Highest depth (m) 12.02 11.11 10.47 9.11 
 

 

From table 3, bathymetry from Landsat L1TP for blue/red ratio was the most statistically significant with root 

mean square error (RMSE) of 1.7 compared to that of the blue/green (2.5) and green/red ratio (2.1). This was 

adopted as the best result for Stumpf log-ratio model and considered most appropriate bathymetry for the 

river. For Landsat-8 L2SP (Table 4), bathymetry of green/red ratio had the least RMSE of 1.8 compared to 

blue/green (3.1) and blue/red ratio (2.4). The green/red ratio bathymetry of Sentinel MSIL2A also had the 

least RMSE and residual (Table 5). Thus, bathymetry of green/red ratio for Landsat-8 L2SP and Sentinel 

MSIL2A were marked as the most appropriate bathymetry for the river. For Lyzenga linear band model, 

bathymetry from the red band was adopted as the best based on previous analysis and comparison. Statistics 

of SBD considered as optimum are presented in Table 6. 

 

Table 6: Statistics of Validation Result Based on Landsat-8 L1TP, L2SP and Sentinel-2 MSIL2A 

              Estimated Depth  
Parameters SBES SDB - Landsat L1TP SDB - Landsat L2SP SDB - Sentinel MSIL2A 

  Lyzenga 

model 

(SDBRED) 

Stumpf 

model 

(SDBBR) 

Lyzenga 

model 

(SDBRED) 

Stumpf 

model 

(SDBGR) 

Lyzenga 

model 

(SDBRED) 

Stumpf 

model 

(SDBGR) 

Std. Dev. 2.1 1.7 1.8 1.7 1.7 1.6 1.9 

RMSE  1.8 1.7 1.7 1.8 1.9 1.5 

R2  0.53 0.62 0.58 0.55 0.30 0.62 

Average depth (m) 4.68 3.09 3.05 2.87 3.38 4.03 3.71 

MIN depth (m) -0.66 -3.41 -2.47 -3.70 -1.79 -5.29 1.96 

MAX depth (m) 12.96 8.76 9.51 8.33 9.96     9.11  10.47 
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The study results reveal that depths from Sentinel MSIL2A based on Stumpf model had the deepest depth of 

10.47 m and shallowest depth of -5.29 m based on Lyzenga model. Averagely, computed standard deviation 

of estimated depths were within the same range but for Sentinel MSIL2A which showed the least standard 

deviation (1.6 m) for the red band and highest (1.9 m) for the green/red ratio. The standard deviation of 1.6 

m implies that the depths were closely clustered around the mean depth. Result of coefficient of determination 

(R2) shows that averagely Landsat-8 estimated depths represented 57% of actual reference depth of the study 

area while Sentinel MSIL2A could define 46% the reference (SBES) depths.  
 

Though log linear models based on multi-linear regression of several bands have yielded good results (Saeed 

et al., 2021), in this study, linear regression of red band yielded better results compared to multi-spectral 

bands. Utilization of red band as optimal band for Lyzenga linear band model was also adopted by Casal et 

al. (2018) in estimating bathymetry of Irish waters using Sentinel-2 data. This shows that the use of longer 

wavelengths (e.g. red) for bathymetry in turbid waters is practicable than blue and green bands. Thus, 

estimated depths with red band showed higher correlation with reference depths than the blue and green 

bands. 
 

The assertion by Amrari et al. (2021) that “bands with a longer wavelength are completely attenuated after 

few meters (or less) under the surface, and subsequently, the backward signal is insignificant” was contrary 

to the results obtained in this study. This was because, the long wavelength (red) band yielded bathymetry 

that closely depict bathymetry from the field data. Comparison of single band (red) Lyzenga model derived 

bathymetry from Landsat 8 in our study with that of multi linear band model of Dewi et al. (2021), show 

better RMSE (1.7 m) than was obtained in Dewi et al. (2021) with RMSE of 2.431 m. This also hold for 

Sentinel-2 as Dewi et al. (2021) recorded RMSE of 2.893 against 1.9 m obtained in this research. Worthy of 

mentioning is the fact that cloud is a serious factor in tropical equatorial regions when considering optical 

satellite data (Purkis et al., 2019; Daly et al., 2020).  Hence, satellite data were not devoid of cloud. Landsat- 

8 L1TP and L2SP had 2.06% of cloud each, while Sentinel MS1LA had 32.60% cloud cover. This greatly 

impacted on the bathymetry derived from Sentinel-2 data despite its high spatial resolution.  However, 

atmospheric correction of Landsat-8 level-1 of December 19th 2021 with C2RCC proved very effective in 

removing sunglint and radiometric noise from the satellite data (Casal et al., 2018). 

 

4.0. Conclusions 

 

The aim of this study was to estimate bathymetry for Imo River using medium resolution satellite images for 

the purpose of evaluating their performances and suitability. Landsat-8 level-1 and level-2 images and 

Sentinel-2 level- 2 images were used in the study.  Stumpf et al. (2003) log ratio and Lyzenga et al. (2006) 

log linear empirical models were adopted. Blue, green and red image bands and a combination of the three 

bands were employed in the estimation process to allow for effective evaluation. For Lyzenga model, the best 

bathymetry output from the two images were obtained from the red band, while blue/red band ratio yielded 

more precise result from Landsat-8 level-1 based on Stumpf’s model. Results from the blue/green band of 

both Landsat-8 level-2 and Sentinel-2 level-2 images closely depict field-based situation. 

 

Research results further revealed that satellite images acquired on January 24, 2021 and February 18, 2021 

(period within which sounding data used for calibration was carried out), were replete with cloud and not 

suitable for bathymetry estimation. Although these images were subjected to atmospheric correction, sun-

glint removal and low pass filtering, range of estimated depth were beyond sounded depths. Sentinel-2 level-

2 of January 24, 2021 estimated deep waters as shallow depths, and regions of low depth values as deep 

waters.  On the contrary, Landsat-8 image of December 19, 2021 and Sentinel-2 image captured on December 

20, 2021 yielded bathymetry outputs of good correlation with in-situ depths. Coefficient of determination 

shows that Landsat-8 averagely estimated depths by 57% while Sentinel-2 showed 46% performance. Deepest 

estimated depth from both satellites images was approximately 10 m compared to 12 m depth obtained from 

field-based sounding. 
 

In conclusion, the study revealed that Landsat-8 and Sentinel-2 medium resolution images performed 

relatively similarly in bathymetry estimation of Imo River. Sentinel-2 generated depth deeper than Landsat-

8 by 0.51 m and shallowest depth beyond Landsat-8 by 1.59 m but with low fidelity. 
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