








2.4. Gas chromatograph–mass spectrometry (GC/MS) analysis  

Gas chromatography-flame ionization detector (GC-FID) analysis  

The GC-FID analyses of the PAHs were made on a Hewlett Packard Agilent 6890 series with a flame 

ionization detector (FID) and cold on-column injection. Calibration of the PAHs was done using their 

respective standard. Exactly 1 μl portion of the sample was  injected and analyzed for TPHs (C 9 -  C 

40). An HP-5 column having the dimensions 30 m x 0.25 mm with a stationary phase thickness of 0.25 

μm was used for analytical separation. The carrier gas was purified nitrogen held at a flow rate of 5 ml 

min −1. The operating temperature program was started at 60 °C for 2 min and then increased at a rate 

of 10 °C per minute to 300 °C for 10 min. The injector and detector temperatures were maintained at 

250 °C and 300 °C respectively. The minimum detection limit for a ll the compounds analyzed was 0.1 

μg kg −1 wet weight. As the samples appeared from the column (at constant flow rate) the FID detector 

automatically detected them and this response is based on the components of the vapour (Enuneku et 

al., 2015; Oyibo et al., 2018).  

Table 1: Location of sampling stations and coordinates      

No Station code Station name  
Coordinates  

Latitude (N)  Longitude (E)  

1 L1 Upper stream of River Niger -Buguma River  
4° 44'10.10"  6° 51' 44.50"  

2 L2 Middle section of River Niger -Krakrama River  
4° 33' 04.00"  6° 57' 03.00"  

3 L3 Downstream of River Niger -Bonny River  
4° 22' 59.99"  7° 05' 60.00"  

 

The samples were properly labelled for identification of sources and immediately transported to the 

laboratory as soon as after sampling for preservation and analysis. The duration of preservation of the 

water samples was seven days at a temperature of 40oC (in a fridge) by adding HNO3  to maintain a 

pH < 2, according to the industrial waste resource guidelines (USEPA 2022).   

2.3. Sample preparation, extraction, analysis and clean-up  

The target analytes were the 16 PAHs stipulated by USEPA (2009). They are (Nap, Acy, Ace, Flu, Phe, 

Ant, Fla, Pyr, BaA, Chr, BkF, BbF, BaP, DahA, BghiP, InP). Water samples were filtrated under 

vacuum with 0.45 µm and 0.22 µm hydrophilic filters to separate the particulates within 7 days after 

collection. The entire sample were poured the into a 1 litre separatory funnel. The methylene chloride 

extract was collected into a 250 ml Erlenmeyer flask. Subsequently, 20 ml of methylene chloride was 

used to rinse both the separatory funnel and the column into the flask and the process was repeated 

thrice. This was purified by passing through a pasture pipette packed with silica gel and anhydrous 

sodium sulphate on a membrane and concentrated by blowing it down with nitrogen gas to about 2 ml. 

This was transferred into 2 well-labelled vial  (1 ml each) and stored at 4°C until GC analysis  (USEPA 

2022). 
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were ensured by using standard reference materials with each batch of samples, adding a solvent blank 

and a procedure blank. The precision of analytical data for each sample was  determined by three 

consecutive measurements of the standard reference solution. Each sample was detected three times 

and the mean value was accepted.  

2.6. Risk assessment  

It is crucial to assess the risk posed by PAHs for ecological environment security and to protect human 

health. 

 

Figure 1: Map showing the study area (Onyegeme-Okerenta et al., 2022) 

2.5. Quality Assurance and Quality Control  

Average recoveries and relative standard deviations (RSDs) of PAHs were monitored under strict 

quality assurance. The residue levels of PAHs were quantitatively determined by multiple analyses of 

10 replicate spiked water samples with a concentration of 10 ng L−1  for PAH congeners. In order to 

monitor procedural performance and matrix effects, surrogate standards were added to all the samples 

(Sun et al., 2009). Before sample analysis, working standard solutions of PAHs were detected to 

determine peak response and evaluate peak resolution. Average recoveries of PAHs in 10 replicate 

spiked water samples were between 78% and 116%. Quality assurance and quality control procedures 
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Health risks through dermal contact for ith PAHs were calculated by the following equations (USEPA, 

2004): 

CRder i  =    TEQwi * Kpi * ABSd * tevent  
 SA * ET * EFd * EDd  

* 
SF 

(4) 
BW * AT  ABSg  

CRder = ∑CRder,i            (5) 

where KP , ABSd, and tevent refer to dermal permeability coefficient of pollutant; dermal absorption factor 

and event duration, respectively; EV, EDd, and EFd represent the event frequency, dermal contact 

exposure duration, and dermal contact exposure frequency, respectively; SA refers to skin surface area; 

ABSg is the gastrointestinal absorption. The values of parameters were obtained from the references 

and shown in Table 2.  

Table 2: Parameters and input assumptions for exposure assessment of PAHs 

Parameter/Definition  (units) 
Values 

Reference 

Adult  Child  

Contaminanat concentration in water (Cw) (mg L-1) value in this study  value in this study  
 

Incidental water ingestion rate per event (during 
swimming) (IRs) (L d-1) 

0.053 0.098 USEPA, 2011 

Event frequency (EV) (day-1) 
1 1 USEPA, 2004 

Event duration (Tevent) (h day-1) 
0.58 1 USEPA, 2004 

Exposure frequency (EF) (y) 350 350 
USEPA, 2004 

Exposure frequency (ED) (d y-1) 24 6  

Total exposure frequency (EDt) (d y -1) 39.7 15  

Exposed skin surface area (SA) (cm2) 18000 6600  

Gastrointestinal absorption factor (ABSg)  BaP and other PAHs: 0.89 USEPA, 2004 

Dermal Absorption factor, ABSd BaP & other PAHs: 0.13 USEPA, 2004 

Dermal permeability constant (Kp) (cm h-1) 
BaA, Chr: 0.47; BaP, BbF: 0.7 

USEPA, 2004 

Unit conversion factor (CF) (L cm-3) 0.001 0.001 

 

Body weight (Bw) (Kg) 70 15 
USEPA, 2004 

Average time (AT) (d) 54.7 x 350 (carcinogenic) 

 

Ingestion Slope Factor (SFing) (kg d mg-1) BaA, BbF, BkF: 0.73; Chr: 0.073 

 

Dermal Slope Factor (SFder) (kg d mg-1) BaA, BbF, BkF: 2.5; Chr: 0.25 

 

 

Health risks posed for each pollutant in surface water for the subgroups were calculated using equation 

6. 

CRi = CRing + CRder      (6) 
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Figure 5: Distribution of cancer risk of PAHs in 
the sampling sections: CRChild, CRAdult and 
Lifetime Cancer Risk  

Figure 6. Mean contributions to Lifetime 
cancer from PAHs congeners 

 

4.0. Conclusion  

In this research, levels and sources of PAHs found in three sections of the River Niger's surface water 

were investigated, and related ecological and human health risks were estimated. Also water quality 

index, the toxicity load and removal of PAHs to make the water safe for human consumption were 

estimated. Selected PTEs concentrations were higher than the FAO/WHO recommended levels in all 

samples taken from the three riverine communities, which made up the sampled sites. The MDRs and 

multivariate  analyses (PCA and Cluster analysis) demonstrated that PAHs were primarily petrogenic 

and pyrolytic by-products  of human activities.   

Due to similar pollution sources, PAHs have often been found to co-exist with PTEs, therefore risk 

computed must include the two contaminants. The average values of CR of surface waters  samples from 

the three sections of River Niger  were above  the recommended threshold of 1 x 10-6  for PAHs. Increased 
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concentrations of PAHs and associated risks to the environment and public health in the riverine towns 

of Buguma, Krakrama, and Bonny may be related to the indiscriminate discharge of untreated industrial 

effluents, domestic waste, and unlawful bunkering that takes place at the Niger Delta's creeks. The three 

parts of the River Niger's surface water were found to be highly polluted, and as a result, there is a risk 

that it will have a negative impact on both children's and adults' health.  In view of this, it is therefore 

recommended that stakeholders and policymakers should help in  crafting policies and strategies to 

mitigate the level of crude oil pollution, and consequently reduce PAH contamination as well as monitor 

PAHs pollution in surface waters of the communities along Buguma, Krakrama and Bonny creeks for 

sustainable ecosystem and human health. 
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