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ABSTRACT 
 

This study analysed the stress and displacement responses of an all-clamped rectangular thick plate 

subjected to a uniformly distributed load using polynomial displacement functions. A polynomial 
shear deformation function was incorporated in the determination of the general governing 

equations; hence, there is no need for shear correction factors. Approximate Polynomial 
Displacement Functions w, u, and v for all the clamped thick rectangular plates subject to transverse 

loading were obtained. Numerical results were obtained using displacement equations obtained from 
the literature for the non-dimensional form of displacements and stresses of an all clamped (CCCC) 

plate at different aspect and span-depth ratios to determine the efficiency of this theory. The results 

obtained were validated as they showed good agreement with the results obtained by other 
researchers available in literature. Hence, this theory can be used as a reliable, concise, easy and 

dependable means for the stress and displacement analysis of thick plates. The results obtained also 
indicate that at a span-depth ratio of 100 and above, the classical plate theory (CPT) can be used to 

analyse plates, as the numerical values obtained are approximately equal to that of the CPT. 
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1.0. Introduction 

 

A plate can be defined as a structural member confined by two parallel faces and a cylindrical surface 

called an edge (Onodagu et al., 2021). Plates are crucial components in engineering with a variety of 

applications ranging from aerospace engineering, civil and structural engineering, mechanical 

engineering, marine engineering and others. There is an increase in the use of plates in the modern 

engineering industry due to their advantages, including high strength and light weight. The analysis of 

engineering members is necessary to understand their behavior under loading conditions and hence, 

recommend optimum utilization of these components (Uzodinma et al., 2022). 

 

The Kirchhoff (1850) classical plate theory (CPT) has widely been used to analyse thick and thin plates 

in structural mechanics. However, the major drawbacks of the CPT in the analysis of thick plates are 

the fact that the theory assumes the transverse shear deformation along the thickness of the plate to be 

zero and that the straight lines normal to the middle surface remain unchanged. Consequent to these 

shortcomings, several other theories have been proposed for the analysis of thick plates. Reissner (1945) 

and Mindlin (1951) were the pioneers of the widely known First-order shear deformation theories, 

where they assumed a constant transverse shear strain and hence the need for shear correction factors 

to describe the relationship between the shear strains and resultant shear forces (Sayyad, 2013). Other 

developed theories include Reddy’s third order and other higher-order theories that take into 

consideration the transverse shear strain. 

 

However, most of these theories are characterized by the use of trigonometric displacement functions, 

which, when in analysis, may result in complicated and erroneous mathematical calculations. 

Consequently, Ibearugbulam et al. (2012) developed polynomial displacement functions that provided 

a more concise, simplified and precise technique in the analysis of rectangular flat thin plates. 

Furthermore, Onyechere (2019) extended the use of these polynomial displacement functions to the 

vibration and stability analysis of thick rectangular plates, where he also developed a polynomial shear 
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deformation function based on the Touratier (1991) trigonometric model. Onodagu et al. (2021) also 

used polynomial displacement functions for the flexural analysis of rectangular SSSS thick plates after 

developing a shear deformation function based on the Soldatos (1992) trigonometric model. This study 

aims to extend the Onadogu (2021) model to the flexural analysis of an all-clamped rectangular thick 

plate. 

 

2.0. Theoretical framework 
 

The polynomial shear deformation function developed by Onodagu et al. (2021) is expressed in 

Equation 1. 

                                                    𝑓(𝑧) = 𝑧 [1 − 
13

10
(

𝑧

𝑡
)

2
]                                                             (1) 

f (z) represents the shape function that describes the distribution of the transverse shear stresses along 

the thickness (z is the coordinate in the direction of the plate thickness) and “t” is the thickness of the 

plate. 

If the dimensional coordinates x, y, and z are expressed in non-dimensional coordinates as; 

                                                                         x=iI   ; y=jJ    ; z=st (2) 

The expression for the deflection of rectangular thick plates as obtained by Onodagu et al. (2021) is 

expressed in Equation (3) 

 

𝑤(𝐼, 𝐽) = 𝑤𝑥 . 𝑤𝑦 = (𝐴0 + 𝐴1𝐼 + 𝐴2𝐼2 + 𝐴3𝐼3 + 𝐴4𝐼4)(𝐵0 + 𝐵1𝐽 + 𝐵2𝐽2 + 𝐵3𝐽3 + 𝐵4𝐽4)       (3) 

 

The coefficients Am and Bn of the series are determined by the boundary conditions at the edges of the 

plate. 

 

Similarly, the polynomial displacement functions for ‘u’ and ‘v’, for the thick plate as obtained by 

Onodagu et al. (2021) are expressed in Equations (4) and (5). 

 

                                                 𝑢 =
∂𝑤

∂𝐼
⋅ 𝑆𝑡 [−

1

𝑖
+ (1 −

13𝑆2

10
) ⋅∩1]                                              (4) 

                                                 𝑣 =
∂𝑤

∂𝐽
⋅ 𝑆𝑡 [−

1

𝑗
+ (1 −

13𝑆2

10
) ⋅∩2]                                              (5) 

Where: 

 ∩1=
200

161𝑖
.

1

∫  
1

0 (
𝜕∅𝑥𝑥

𝜕𝐼
)𝑑𝐽

. (∫  
1

0
(

𝜕2𝑤𝑦

𝜕𝐽2 ) 𝑑𝑄)
𝜕𝑤𝑥

𝜕𝐼
.

200

161𝑖
.

1

(∫  
1

0 (
𝜕2∅𝑥𝑦

𝜕𝐽2 )𝑑𝐽)

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                               (6) 

∩2= 𝑛3 .
200

161𝑖𝑝
.

1

(∫  
1

0 (
𝜕∅𝑦𝑦

𝜕𝑄
)𝑑𝐽)

. (∫  
1

0
(

𝜕2𝑤𝑥

𝜕𝐼2 ) 𝑑𝐼)
𝜕2𝑤𝑦

𝑝𝜕𝐽2 𝑛3 
200

161𝑖
.

1

(
𝜕2∅𝑦𝑥

𝜕𝑅2 )𝑑𝐼
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                       (7) 

 

The Direct Governing Simultaneous Equations for the Flexural Analysis of isotropic thick rectangular 
plates subject to transverse loading where k1, k2 and k3 are coefficients of displacements representing 

deflection, rotation in the x axis, and rotation in the y axis, respectively, are expressed in Equations (8), 

(9) and (10). 

 
𝐷

𝑖4 [(𝑚1 +
𝑚3

𝑃4 +
2𝑚2

𝑃2 ) 𝐾1 + (−𝑚1
161

200
−

𝑚2

𝑃2

161

200
) 𝐾2 + (−

𝑚3

𝑃4

161

200
−

𝑚2

𝑃2

161

200
) 𝐾3] = 𝑞𝑚6               (8)                                                                          

𝐷

𝑖4 [(−𝑚1
161

200
−

𝑚2

𝑃2

161

200
) 𝐾1 + (𝑚1

1223

1867
+ (

1−𝜇

2𝑃2 ) 𝑚2
1223

1867
+ (

1−𝜇

2
) ∝2 𝑚4

12960

2000
) 𝐾2 +

((
1+𝜇

2𝑃2 ) 𝑚2
1223

1867
) 𝐾3]                                                                                                                      (9)                                                                                               
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12960

2000
) 𝐾3]                                                                                                                  (10)           

 Where:    
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𝑚1 = ∫  
1

0 ∫  
1

0
(

∂2ℎ

∂𝐼2 )
2

∂𝐼 ∂𝐽                                                                   (11) 

𝑚2 = ∫  
1

0 ∫  
1

0
(

∂2ℎ

∂𝐼2 ⋅
∂2ℎ

∂𝐽2) ∂𝐼 ∂𝐽                                                            (12) 

𝑚3 = ∫  
1

0 ∫  
1

0
(

∂2ℎ

∂𝐽2)
2

∂𝐼 ∂j                                                                   (13) 

𝑚4 = ∫  
1

0
∫ (

∂h

∂I
)

21

∂𝐼 ∂𝐽                                                                    (14) 

𝑚5 = ∫  
1

0 ∫  
1

0
(

∂h

∂J
)

2
∂𝐼 ∂𝐽                                                                    (15) 

𝑚6 = ∫  
1

0 ∫  
1

0
ℎ ∂𝐼 ∂𝐽                                                                           (16) 

 

3.0. Results and Discussions 

 

The approximate polynomial for the deflection “w” of an isotropic rectangular load for flexural analysis 

is presented as: 

  

𝑤(𝐼, 𝐽) = 𝑤𝑥 . 𝑤𝑦 = (𝐴0 + 𝐴1𝐼 + 𝐴2𝐼2 + 𝐴3𝐼3 + 𝐴4𝐼4)(𝐵0 + 𝐵1𝐽 + 𝐵2𝐽2 + 𝐵3𝐽3 + 𝐵4𝐽4)     (17) 

 

The boundary conditions for the CC edge are as follows; 

 

i. At I = 0 and I =1 , the deflection and  𝑤𝑥 = 0                                                                                   

ii. 𝐴𝑡 I = 0 and I = 1, 𝑆𝑙𝑜𝑝𝑒 = 0, 𝑖.𝑒. 
∂𝑤𝑥

∂I
= 0                                                                                 

 

Substituting conditions 

 𝑖0 = 0     ; 𝑖1 = 0;  𝑖3 = −2𝑖4      ;   𝑖2 = 𝑖4 yields;                                                                                                                                                                                                                                   

                                                         𝑤𝑥 = i(𝐼2 − 2𝐼3 + 𝐼4)                                                       (18) 

In the same manner, repeating the same procedure for simply clamped edge condition in the x-direction 

for the y-direction, we obtain a similar answer as expressed in Equation (19) 

                                                         𝑤𝑦 = 𝑗4(𝐽2 − 2𝐽3 + 𝐽4)                                                      (19) 

The Polynomial Displacement Functions w, u and v for CCCC thick rectangular plates subject to 

transverse loading are expressed in Equations (20), (21) and (22) respectively. 

𝑤 = 𝑖4(𝐼2 − 2𝐼3 + 𝐼4) ⋅ 𝑗4(J − 2𝐽3 + 𝐽4)                                                                                   (20) 

𝑢 = 𝐾1[(2I − 6𝐼2 + 4𝐼3)(𝐽2 − 2𝐽3 + 𝐽4)]. 𝑆𝑡 [−
1

𝑖
+ (1 −

13𝑆2

10
) ⋅∩1]                                      (21) 

𝑣 = 𝐾1(𝐼2 − 2𝐼3 + 𝐼4)(2J − 6𝐽2 + 4𝐽3) ⋅ 𝑆𝑡 [−
1

𝑗
+ (1 −

13𝑆2

10
) ⋅∩2]                                        (22) 

The shape function “h” of the CCCC thick plate is expressed in Equation (23). 

                                                 ℎ = (𝐼 − 2𝐼3 + 𝐼4) ⋅ (𝐽 − 2𝐽3 + 𝐽4)                                          (23) 

The “mn=1,2…6” values for the flexural analysis of the thick rectangular CCCC plate are summarized in 

Table 1. 

 

 

Table 1: Summary of “mn=1,2…6” values for CCCC thick plate. 
mn=1,2…6 value 

m1 0.00127 

m2 0.000363 
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m3 0.00127 

m4 0.0000302 

m5 0.0000302 

m6 0.0011111 

3.1. Numerical example 

Determine the deflection, displacement, and stress of an isotropic CCCC plate with a varying span-to-

depth ratio corresponding to different aspect ratios and subjected to a uniformly distributed load, q. μ = 

0.3. Results are presented in the form; 

𝒘̅ =
100E𝑡3

q𝑖4 𝑤                (𝒖,̅̅ ̅̅ 𝒗̅) =
E𝑡2

q𝑖3 (𝑢, 𝑣)                               (𝝈̅𝒙, 𝝈̅𝒚) =
𝑡2

q𝑖2 (𝜎𝑥 , 𝜎𝑦) 

𝝉̅𝒙𝒚 =
𝑡2

q𝑖2 𝜏𝑥𝑦                                      (𝝉̅𝒛𝒙, 𝝉̅𝒚𝒛) =
𝑡

q𝑖
(𝜏𝑧𝑥 , 𝜏𝑦𝑧)                                                 (24) 

The deflection, in-plane stresses and shear stress to be determined corresponds to; 

𝑤̅ 𝑎𝑡 (𝑥 =
𝑖

2
, 𝑦 =

𝑗

2
)                             𝑢̅ 𝑎𝑡 (𝑥 =  0, 𝑦 =

𝑗

2
 )                            𝑣̅ 𝑎𝑡 𝑎𝑡 (𝑥 =

𝑖

2
 , 𝑦 = 0)   

(𝜎𝑥 , 𝜎𝑦 ) 𝑎𝑡 (𝑥 =
𝑖

2
, 𝑦 =

𝑗

2
)                  𝜏𝑥̅𝑦 𝑎𝑡 (𝑥 =  0.2, 𝑦 = 0.2 )                    𝜏̅𝑧𝑥  𝑎𝑡 (𝑥 =  0, 𝑦 =

𝑗

2
 ) 

𝜏𝑦̅𝑧  𝑎𝑡 (𝑥 =
𝑖

2
 , 𝑦 = 0 )                                                                        (25) 

The results obtained for the deflection at the center of the CCCC isotropic thick plate, the in-plane 

stresses, and the vertical shear stresses of the plate for different span-to-depth ratios corresponding to 

different aspect ratios (1, 1.5, 2,) subjected to uniformly distributed load are shown in Tables (2 – 4). 

Table 2: Numerical results for the non-dimensional form of displacements and stresses for CCCC 

plates; p=1. 
α 𝒘̅ 𝒖̅ 𝒗̅ 𝝈̅𝒙 𝝈̅𝒚 𝝉̅𝒙𝒚 𝝉̅𝒛𝒙 𝝉̅𝒚𝒛 

4 2.835239 -0.13388 -0.13388 2.868829 2.868829 -0.06074 1.694641 1.694641 

5 2.339754 -0.12748 -0.12748 2.731658 2.731658 -0.05784 1.70094 1.70094 

6 2.069055 -0.12398 -0.12398 2.656717 2.656717 -0.05625 1.704381 1.704381 

7 1.905302 -0.12186 -0.12186 2.611384 2.611384 -0.05529 1.706463 1.706463 

8 1.798806 -0.12049 -0.12049 2.581901 2.581901 -0.05467 1.707816 1.707816 

9 1.725695 -0.11954 -0.11954 2.561661 2.561661 -0.05424 1.708746 1.708746 

10 1.67335 -0.11887 -0.11887 2.54717 2.54717 -0.05393 1.709411 1.709411 

15 1.549213 -0.11726 -0.11726 2.512804 2.512804 -0.0532 1.710989 1.710989 

20 1.505711 -0.1167 -0.1167 2.50076 2.50076 -0.05295 1.711542 1.711542 

25 1.485566 -0.11644 -0.11644 2.495183 2.495183 -0.05283 1.711798 1.711798 

30 1.47462 -0.1163 -0.1163 2.492153 2.492153 -0.05277 1.711938 1.711938 

40 1.463735 -0.11616 -0.11616 2.48914 2.48914 -0.0527 1.712076 1.712076 

50 1.458697 -0.11609 -0.11609 2.487745 2.487745 -0.05267 1.71214 1.71214 

100 1.451978 -0.11601 -0.11601 2.485885 2.485885 -0.05263 1.712225 1.712225 

150 1.450733 -0.11599 -0.11599 2.48554 2.48554 -0.05263 1.712241 1.712241 

200 1.450298 -0.11599 -0.11599 2.48542 2.48542 -0.05262 1.712247 1.712247 

250 1.450096 -0.11598 -0.11598 2.485364 2.485364 -0.05262 1.712249 1.712249 

300 1.449987 -0.11598 -0.11598 2.485334 2.485334 -0.05262 1.712251 1.712251 

350 1.449921 -0.11598 -0.11598 2.485315 2.485315 -0.05262 1.712252 1.712252 

400 1.449878 -0.11598 -0.11598 2.485304 2.485304 -0.05262 1.712252 1.712252 

450 1.449848 -0.11598 -0.11598 2.485295 2.485295 -0.05262 1.712253 1.712253 

500 1.449827 -0.11598 -0.11598 2.48529 2.48529 -0.05262 1.712253 1.712253 

1000 1.44976 -0.11598 -0.11598 2.485271 2.485271 -0.05262 1.712254 1.712254 

 

 
Table 3: Numerical results for the non-dimensional form of displacements and stresses for CCCC 

plates; p=1.5 
α 𝒘̅ 𝒖̅ 𝒗̅ 𝝈̅𝒙 𝝈̅𝒚 𝝉̅𝒙𝒚 𝝉̅𝒛𝒙 𝝉̅𝒚𝒛 

4 4.398917 -0.21521 -0.18494 4.157126 3.096528 -0.11168 2.492575 1.661717 

5 3.753186 -0.21099 -0.16983 4.037798 2.90961 -0.10565 2.543036 1.695357 

6 3.396791 -0.20899 -0.16073 3.974835 2.799737 -0.1021 2.574319 1.716213 

7 3.179688 -0.20791 -0.15488 3.937647 2.730106 -0.09987 2.594758 1.729839 
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8 3.037806 -0.20726 -0.15092 3.913863 2.683395 -0.09837 2.608731 1.739154 

9 2.940062 -0.20684 -0.14813 3.897732 2.65063 -0.09733 2.618658 1.745772 

10 2.869902 -0.20655 -0.14609 3.886285 2.626806 -0.09657 2.625939 1.750626 

15 2.702882 -0.20592 -0.14112 3.859499 2.569015 -0.09473 2.643823 1.762549 

20 2.64413 -0.20572 -0.13932 3.850238 2.548314 -0.09408 2.650305 1.76687 

25 2.616882 -0.20563 -0.13849 3.845972 2.538645 -0.09377 2.653346 1.768898 

30 2.602066 -0.20558 -0.13803 3.843661 2.533369 -0.0936 2.655009 1.770006 

40 2.587325 -0.20553 -0.13757 3.841366 2.528107 -0.09344 2.65667 1.771114 

50 2.580498 -0.20551 -0.13736 3.840306 2.525666 -0.09336 2.657442 1.771628 

100 2.571392 -0.20548 -0.13707 3.838893 2.522405 -0.09326 2.658473 1.772315 

150 2.569706 -0.20547 -0.13702 3.838631 2.5218 -0.09324 2.658664 1.772443 

200 2.569115 -0.20547 -0.137 3.83854 2.521589 -0.09323 2.658731 1.772488 

250 2.568842 -0.20547 -0.13699 3.838498 2.521491 -0.09323 2.658762 1.772508 

300 2.568693 -0.20547 -0.13699 3.838475 2.521438 -0.09323 2.658779 1.77252 

350 2.568604 -0.20547 -0.13699 3.838461 2.521405 -0.09323 2.658789 1.772526 

400 2.568546 -0.20547 -0.13698 3.838452 2.521385 -0.09323 2.658796 1.772531 

450 2.568506 -0.20547 -0.13698 3.838446 2.52137 -0.09322 2.658801 1.772534 

500 2.568478 -0.20547 -0.13698 3.838441 2.52136 -0.09322 2.658804 1.772536 

1000 2.568386 -0.20547 -0.13698 3.838427 2.521328 -0.09322 2.658814 1.772543 

 

Table 4: Numerical results for the non-dimensional form of displacements and stresses for CCCC 

plates; p=2.0 
α 𝒘̅ 𝒖̅ 𝒗̅ 𝝈̅𝒙 𝝈̅𝒚 𝝉̅𝒙𝒚 𝝉̅𝒛𝒙 𝝉̅𝒚𝒛 

4 5.298245 -0.26408 -0.18534 4.811168 2.833413 -0.144 2.913429 1.456714 

5 4.520372 -0.25786 -0.16498 4.658385 2.634864 -0.13335 2.956355 1.478178 

6 4.090694 -0.25458 -0.15312 4.575004 2.520888 -0.12722 2.981456 1.490728 

7 3.828971 -0.25264 -0.14566 4.524592 2.449863 -0.1234 2.997262 1.498631 

8 3.657984 -0.2514 -0.1407 4.491818 2.402783 -0.12087 3.007807 1.503904 

9 3.540229 -0.25055 -0.13723 4.469322 2.37004 -0.1191 3.015173 1.507586 

10 3.455732 -0.24995 -0.13472 4.453218 2.346381 -0.11783 3.020511 1.510255 

15 3.254689 -0.24854 -0.12867 4.415033 2.289533 -0.11476 3.033391 1.516696 

20 3.184013 -0.24806 -0.12651 4.401654 2.269358 -0.11367 3.037981 1.51899 

25 3.151244 -0.24783 -0.12551 4.395459 2.25997 -0.11317 3.04012 1.52006 

30 3.133429 -0.24771 -0.12496 4.392093 2.254858 -0.11289 3.041285 1.520643 

40 3.115704 -0.24759 -0.12442 4.388745 2.249764 -0.11262 3.042447 1.521224 

50 3.107497 -0.24753 -0.12417 4.387196 2.247404 -0.11249 3.042986 1.521493 

100 3.09655 -0.24746 -0.12383 4.38513 2.244253 -0.11232 3.043705 1.521852 

150 3.094522 -0.24744 -0.12377 4.384747 2.24367 -0.11229 3.043838 1.521919 

200 3.093813 -0.24744 -0.12374 4.384613 2.243465 -0.11228 3.043885 1.521942 

250 3.093484 -0.24744 -0.12373 4.384551 2.243371 -0.11227 3.043906 1.521953 

300 3.093306 -0.24743 -0.12373 4.384518 2.243319 -0.11227 3.043918 1.521959 

350 3.093198 -0.24743 -0.12373 4.384497 2.243288 -0.11227 3.043925 1.521963 

400 3.093128 -0.24743 -0.12372 4.384484 2.243268 -0.11227 3.04393 1.521965 

450 3.093081 -0.24743 -0.12372 4.384475 2.243254 -0.11227 3.043933 1.521967 

500 3.093046 -0.24743 -0.12372 4.384469 2.243244 -0.11226 3.043935 1.521968 

1000 3.092937 -0.24743 -0.12372 4.384448 2.243213 -0.11226 3.043942 1.521971 

 

From the numerical results for the non-dimensional form of displacements and stresses for all the shape 

functions considered, it is observed that as the span-depth ratio increases, values of in-plane quantities 

and those of out-of-plane quantities decrease for each aspect ratio, p. However, this decrease was sharp 

until α=100, where values obtained were approximately not different. This is further buttressed 

graphically in Figures 1, 2 and 3. Similarly, it can also be observed that as the aspect ratio increases, 

the values of in-plane quantities and those of out-of-plane quantities increase also. 
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Figure 1: A graph of non-dimensional deflection, 𝑤̅ against span-depth ratio. 

 

Figure 2: A graph of non-dimensional displacement, −𝑢̅ against span-depth ratio. 

 

Figure 3: A graph of non-dimensional displacement, −𝑣̅ against span-depth ratio. 
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Table 5: Non dimensional forms of displacement of CCCC plate for α = 5 and 𝑝 =
𝑗

𝑖
= 1 

 

Study 

α 𝑤̅ = w (
𝐷

𝑞𝑖4)x100 𝑢̅ = u (
𝐷

𝑞𝑖4) x100 𝑣̅ = v (
𝐷

𝑞𝑖4) x100 

present  

 

 

 

 

 

 

5 

0.2143 -0.233 -0.233 

Ibearugbulem et al. (2018) 0.2144 -0.225 -0.225 

% difference 0.04664179 -3.55556 -3.55556 

Zhong and Xu (2017) 0.2114 - - 

 % difference -1.371807001 - - 

Lok and Cheng (2001) 0.2147 - - 

% difference 0.186306474 - - 

Liu and Liew (1998)  0.2172 - - 

% difference 1.335174954 - - 

Shen and He (1995) 0.2204 - - 

% difference 2.7676951 - - 

Rui et al. (2014) 0.2172 - - 

% difference 1.335174954 - - 

 

Table 6: Non dimensional forms of displacement of CCCC plate for α = 10 and 𝑝 =
𝑗

𝑖
= 1 

 

Study 

α 𝑤̅ = w (
𝐷

𝑞𝑖4)x100 𝑢̅ = u (
𝐷

𝑞𝑖4) x100 𝑣̅ = v (
𝐷

𝑞𝑖4) x100 

present  

 

 

 

 

 

 

 

 

10 

0.1532 -0.109 -0.109 

Ibearugbulem et al. (2018) 0.1534 -0.2094 -0.2094 

% difference 0.1303781 47.94651 47.94651 

Zhong and Xu (2017) 0.1483 - - 

% difference -3.304113284 - - 

Lok and Cheng (2001) 0.1495 - - 

% difference -2.474916388 - - 

Liu and Liew (1998)  0.1505 - - 

% difference -1.794019934 - - 

Shen and He (1995) 0.1513 - - 

% difference -1.255783212 - - 

Rui et al. (2014) 0.1505 - - 

% difference -1.794019934 - - 

 

Table 5 and 6 presents a comparison between numerical results obtained for the non- dimensional 

deflection and in-plane displacements of the CCCC plate shape function considered in this study and 

those of other researchers available in literature. Results obtained herein showed good agreement with 

those of the other researchers for α = 5, with a maximum percentage difference of 2.7676951% (Shen 

and He, 1995) for non-dimensional deflection, 𝑤̅ and -3.55556% (Ibearugbulem et al., 2018) for non-

dimensional displacements, 𝑢̅ 𝑎𝑛𝑑 𝑣̅. This represents a 97% and 96% level of agreement for the results 

of the non- dimensional deflection and in-plane displacements obtained in this study with those of the 

other researchers considered. A similar occurrence was observed for the non-dimensional deflection, 𝑤̅ 

at α = 10, where a maximum percentage difference of -3.304113284 (Zhong and Xu, 2017) was 

obtained, indicating 96.5% agreement. However, this was not so for the in-plane displacements at α = 

10, where a significant percentage difference of 47.94651% (Ibearugbulem et al., 2018) was observed. 

 

4.0. Conclusions 
 

This study analyzed the stress and displacement responses of an all clamped rectangular thick plate 

subjected to a uniformly distributed load using polynomial displacement functions. The mathematical 

technique employs a simple but precise method that involves definite integration of obtained solutions 

in the form of differential equations. These differential equations are satisfied throughout the domain 

of the plate. 

The equations and constants obtained in this study have been validated as they show good agreement 

with other research results available in the literature. To this effect, they can be used as a reliable and 

dependable means for the flexural analysis of thick plates. 
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