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ABSTRACT 
 

In this study, multiple linear regression models were employed in the correlation of gas supply and 

power generation using a gas Power Plant in Niger Delta, Nigeria as a Case study. From the 

analysis based on outlier detection, reliability analysis and test of homogeneity, it was observed 

that the independent variable data such as ambient temperature, gas pressure and compressed 

temperature failed normality test. Therefore, the use of any linear model for either analysis or 

modelling of the data was not acceptable. Data used for reliability analysis of the gas pressure and 

compressed temperature difference were positively correlated with power generation, having a 

covariance value of 0.639 and 113.148. The ambient temperature was negatively correlated with 

power generation, having a covariance value of 14.564. The positive value showed that both 

dimensions exclusively increased and decreased together with respect to the output while the 

negative value showed that increment in value of one variable led to decrease in the value of the 

other, and vice versa. 

 

Keywords: Natural gas, Power generation, Regression models, Power plant, Ambient temperature 

 
1.0. Introduction 

 

Nigeria’s natural gas reserves, estimated at about 188 trillion standard cubic feet is the largest in 

Africa and known to be substantially larger than its oil resources (Nwokeji, 2007; Izuwan, 2017). 

According to Oyedepo (2012), the largest single consumer of natural gas in Nigeria (before its 

privatization in November 2013) was the Power Holding Company of Nigeria (PHCN), it accounted 

for over 70% used in operating electricity-generating gas plant in the country. Given the current 

reserves and rate of exploitation (about 900mmscfd) for power generation, the expected life span of 

Nigerian natural gas is over 1000 years, thus making it a good means for power generation. As a 

result, the gas produced in Nigeria is used mostly in the power sector for power generation and for 

export as liquefied Petroleum Gas (LPG) (Sambo et al., 2010). Electricity plays a vital role in 

economic growth and social welfare, thus it is essential to have accessible and reliable electricity at 

safe conditions (Luis et al., 2019). 

 

Rapu et al. (2015) put the average generation capacity of electricity in Nigeria to be fluctuating within 

the range of 2,623.1 MW/hr in 2007 and 3,485.5 MW/hr in 2014 as against the estimated demand of 

10,000MW per day. Enete and Alabi (2011) estimated the distribution of household final energy 

consumption by types in Nigeria to be 4% electricity, 13% kerosene, 1% LPG and 82% wood and 

others.  Currently, over 70% of Nigeria power generation is from natural gas utilization in power 

plants. There are over 15 power stations in Nigeria with total generation capacity of over 15,000MW 

that are currently generating about 7000MW (Onochie et al., 2015). The problem is attributed to 

various factors that include gas supply, transmission, grid capacity, plant ambient temperature and 

operating conditions (such as gas pressure and compressed temperature difference), etc. Orogun 

(2015) in his work discussed the challenge of gas pipeline vandalisation as one of the major challenge 

militating against the Federal Government of Nigeria efforts to utilize Nigeria’s natural gas 

sustainably for power generation. This challenge is also compounded due to the inadequacy of natural 

gas transmission and distribution infrastructure. The power station situated in Benin City, Edo state is 
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incorporated with a simple cycle gas turbine with over 450MW capacity and has the following 

coordinates: 6
o
24’20”N 5

o
41’00”E, with Escravos-Lagos pipeline system as the source of gas supply. 

 

Although some studies such as Oricha and Olarinoye (2012) and Iwuamadi and Dike (2012) have 

shown that poor plant maintenance, operational policies and power transmission issues are factors that 

also affect adequate power generation in Nigeria, however, the veracity of these militating factors has 

been tested on the field assessment in some gas power plants and results show less impact on both 

plant capacity performance and economic viability when compared to the effect of gas supply to the 

plants. This paper therefore, attempts to correlate the gas supply and power generation based on 

statistical regression models. 

 

2.0. Materials and Methods 

 

Questionnaires were designed from the data obtained from the National Integrated Power Project 

(NIPP) power stations and some relevant literature. Forty-three (43) variables were considered in the 

questionnaires which was scaled with five (5) point Resits Likert’s attitudinal scale and administered 

to 150 respondents. Respondents’ responses were transposed into metric variables. Gas pressure, 

ambient temperature, compressed temperature difference (CTD) and power generation have been 

identified as variable (Oyedepo et al., 2015) and were used as research parameters in this study. The 

correlation of gas supply and power generation of gas power plant was done using the multiple linear 

regression models to assess the data quality, normality of data and the diagnostic analysis of data. 

 

2.1. Assessment of data quality 

To assess the quality of the data, three important tests were conducted which includes: outlier 

detection; data fitness using reliability analysis; and test of homogeneity.  

 

2.1.1. Detection of outliers using the labelling rule 

In this study, the labelling rule method was employed to detect the presence of outliers. The labelling 

rule is the statistical method of detecting the presence of outliers in data sets using the 25th percentile 

(lower bound) and the 75th percentile (upper bound). The underlying mathematical equation based on 

the lower and the upper bound is presented as follows: 

 

Lower Bound Q1 − [2.2 × (Q3 − Q1)]       (1) 

Upper Bound Q3 + [2.2 × (Q3 −  Q1)]       (2) 

 

At 0.05 degree of freedom, any data lower than Q1 or greater than Q3 was considered an outlier and 

need to be removed before analysis (Levi et al., 2009). 

  

2.1.2. Data fitness using reliability analysis  

Reliability analysis of the data was done to ascertain the fitness of the data for the selected analysis. 

Descriptive analysis of the reliability test was based on the data scale (measured in terms of weight 

and order of distribution). The summary statistics was done to compute the data means, variance, 

covariance and correlations using the intra class correlation coefficient. 

 

2.1.3. Test of homogeneity 

Homogeneity test was carried out to establish the fact that the data used (i.e. gas pressure, ambient 

temperature, CTD and power generation) for the analysis were from the same power plant (same 

population). Homogeneity test is based on the cumulative deviation from the mean as expressed using 

the mathematical equation below (Raes et al., 2006). 
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where, iX = the record for the series X1 X2, … Xn, 



X = the mean, 

Sks = the residual mass curve. 
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For a homogeneous record, one may expect that the Sks fluctuate around the zero-centre line in the 

residual mass curve since there is no systematic pattern in the deviation Xi’s from the average values


X . To perform the homogeneity test, a software package for analysing time series data known as 

Rainbow (Raes et al., 2006) was used. 

  

2.2 Assessment of normality 

In the study the Jarque-Bera (JB) test for normality was employed because the sample size was large 

(i.e. >1000). Mathematically, the JB test is defined (Bowman and Shenton, 1975) as follows: 

 

JB = ]24/)3(6/)[( 2

2

2

1  bbn        (4) 

where, n = sample size, 

√b1 = sample skewness, and  

b2 = kurtosis coefficient. 

 

The hypothesis for the JB test is:  

H0 = Data follows a normally distribution 

H1 = Data do not follow a normal distribution 

 

In general, a large JB value indicates that the residuals are not normally distributed. A value of JB 

greater than 10 means that the null hypothesis has been rejected at the 5% significance level. In other 

words, the data do not come from a normal distribution. JB value of between (0-10) indicates that the 

data is normally distributed (Das and Imon, 2016). 

  

2.3 Diagnostic analysis of data 

Diagnostic statistics were conducted to verify the statistical properties of the overall regression model. 

The selected diagnostic statistics include: 

i. Heteroskedasticity test using Breusch-Pagan Godfrey  

ii. Serial Correlation test using Breusch Godfrey 

iii. Variance Inflation Factor (VIF)  

3.0. Results and Discussion 

 

3.1 Data quality assessment results 

The results of outlier detection test; data fitness test using reliability analysis; and test of homogeneity 

are discussed below. 

 

3.1.1 Data fitness test result using the labelling rule  

Results of the computed percentiles for both the dependent and independent variable are presented in 

Table 1. 

 

Table 1: Computed percentile for both dependent and independent variables 

 

Using the weighted average shown in Table 1, the 25th percentile (Q1) for gas pressure was observed 

to be 20.600 while the 75th percentile (Q3) was observed to be 21.500. Substituting into Eqn. (1) and 

Eqn. (2), the lower and upper bound statistics were computed to be 18.62 and 23.58 respectively. 
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Table 2 shows the highest gas pressure extreme value statistic to be 33.2 and 29.4. These values are 

higher than the calculated upper bound value of 23.58. Likewise the lowest gas pressure are seen to be 

19.4 and 19.5, these are greater than the calculated lower bound of 18.62. It was observed that gas 

pressure values indicated by case number 587, 87, 226, 327 and 351 contained values that are greater 

than the calculated upper bound, hence, they were declared outliers and were removed (Levi et al., 

2009). 

 

From Table 1, the 25th percentile (Q1) for ambient temperature was observed to be 27.000 while the 

75th percentile (Q3) was observed to be 29.300. Using eqns. (1) and (2) the lower and upper bound 

statistics were computed as 21.94 and 34.36 respectively. Table 3 shows the extreme value statistics 

of ambient temperature for the highest and lowest ambient temperature. The highest ambient 

temperature values are 344.3, 330.5 and 185.8, these are higher than the calculated upper bound of 

34.36. The lowest ambient temperature values are 21.0, 21.5, 22.3, 22.8 and 23.5 some of which were 

greater than the calculated lower bound of 21.94. In this case, it was observed that ambient 

temperature values indicated by case number 242, 542, 151, 470 and 1113 contained values that are 

greater than the calculated upper bound, and case number 669 and 739 contained values that are lower 

than the calculated lower bound, hence, they are considered as outliers and removed. 

  

Table 2: Extreme value statistics for gas       Table 3: Extreme value statistics for  

   pressure          ambient temperature 

       

The extreme value statistics of CTD is shown in Table 4. The 25th percentile (Q1) for CTD was seen 

to be 335.650 while the 75th percentile (Q3) was seen to be 350.750. The lower and upper bound 

statistics were computed as 302.43 and 383.97 using eqns. (1) and (2) respectively. From Table 4, the 

highest CTD values were 625.1, 582.2 and 470.6. These values are higher than the calculated upper 

bound of 383.97. The lowest CTD values were observed to be 21.4, 97.5, 100.7 and 123.4. These are 

lower than the calculated lower bound of 302.43. It was observed that CTD values indicated by case 

number 300, 986, 511, 378, 1055 contained values that are greater than the calculated upper bound 

and case number 949, 259, 2, 21 and 15 contained values that are lower than the calculated lower 

bound hence, they were declared outliers and were removed. 

 

Table 5 shows the extreme value statistics of power generation. From Table 1, the 25th percentile (Q1) 

for power generation was observed to be 86.40 while the 75th percentile (Q3) was observed to be 

101.15. Using Eqns. (1) and (2), the lower and upper bound statistics were computed as 53.95 and 

133.60 respectively. From Table 5, the highest power generation values are 161.7, 159.6, 153.8, 152.5 

and 138.9. These are higher than the calculated upper bound of 133.60. The lowest power generation 

values are 21.4 and 28.7. These values are lower than the calculated lower bound of 53.95. It was 

observed that power generation values indicated by case numbers 622, 658, 46, 604 and 275 

contained power generation values that are greater than the calculated upper bound. Also, case 

numbers 949, 259, 948, 257 and 196 contained power generation values that are lower than the 

calculated lower bound, hence, removed as outliers. 
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Table 4: Extreme value statistics for CTD  Table 5: Extreme value statistics for           

               power generation

           
 

3.1.2. Results of data reliability analysis  

Table 6 shows the summary statistics of data means, variance, covariance and correlations using the 

intra-class correlation coefficient. 

 

Table 6: Result of summary item statistics 

 
 

The two-way mixed model with confidence interval of 95% (i.e. p-value of 0.05) and initial test value 

of zero was used. The reliability hypothesis was as follows: 

 

H0: Data are reliable 

H1: Data are not reliable 

 

The Fisher’s probability test (F-test) was used for the analysis and result obtained are presented in 

Table 7. 

 

Table 7: Inter-item correlation and covariance statistics 

 
 

Table 7 shows that the gas pressure and compressed temperature difference were positively correlated 

with power generation and have a covariance value of 0.639 and 113.148 respectively. The large 

covariance value of compressed temperature difference indicates that the variable has an overriding 

influence on power generation compare to gas pressure and ambient temperature. These are seen to be 

negatively correlated with power generation. The computed coefficient of correlations of 0.051 for 

gas pressure, -0.063 for ambient temperature, and 0.311 for compressed temperature difference were 

observed to be relatively weak, which is indicative of the absence of co-linearity problem in the 

regression variables. The highest coefficient of (+0.311) which is between compressed temperature 
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difference and power generation still did not pose any challenge of multi-collinearity. Hence, we can 

conclude that there is no issue of multicollinearity and that the regression variables are clearly 

correlated with the dependent variable. This is evident in the intra-class correlation coefficient 

presented in Table 8. 

 

Table 8: Computed intra-class correlation coefficients 

 
 

Again, we observed from the result of Table 8 that the single and average measure intra-class 

correlation coefficients are relatively weak (0.046 and 0.161) which is indicative of the absence of 

multicollinearity. To ascertain the reliability of the data, one-way analysis of variance (ANOVA) was 

generated and presented in Table 9. At 0.05 degree of freedom (df), with a computed p-value of 0.000 

as observed in Table 9, the null hypothesis was accepted and it was concluded that the data are good 

and can be employed for further analysis. 

  

Table 9: Analysis of variance table 

 
 

3.1.3. Homogeneity test results 

Raes et al. (2006) described homogeneity test as one based on the cumulative deviation from the 

mean. The homogeneity test hypothesis of gas pressure is defined as: 

 

H0: Data are statistically homogeneous. 

H1: Data are not homogeneous. 

 

The null and alternate hypotheses were tested at 90%, 95% and 99% confidence interval (i.e. 0.1, 0.05 

and 0.01) df as shown in Figure 1. 

 

 
Figure 1: Homogeneity test of gas pressure data 

 

The gas presure data is seen to fluctuated around the zero-center line of the residual mass curve in 

Figure 1, an indication that the data were statistically homogeneous. A further test of homogeneity 

was done using the homogeneity statistics to check the strength of the null hypothesis over the 

alternate hypothesis. Based on the result obtained, the null hypothesis (H0) was accepted, and we 

concluded that the gas pressure data were statistically homogeneous at 90%, 95% and 99% confidence 

interval. 

 

The homogeneity test hypothesis for ambient temperature is as follows: 
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H0: Data are statistically homogeneous. 

H1: Data are not homogeneous. 

 

The null and alternate hypotheses were tested at 90%, 95% and 99% confidence interval (i.e. 0.1, 0.05 

and 0.01) df as shown in Figure 2. 

 

 
Figure 2: Homogeneity test of ambient temperature data 

 

The ambient temperature data (Figure 2) fluctuated around the zero-center line of the residual mass 

curve, an indication that the data were statistically homogeneous. The homogeneity statistics was used 

to check the strength of the null hypothesis over the alternate hypothesis. Based on the result obtained, 

the null hypothesis (H0) was accepted, and it was concluded that the ambient temperature data were 

statistically homogeneous at 90%, 95% and 99% confidence interval. 

 

The hypothesis of homogeneity test of compressed temperature difference data is:  

 

H0: Data are statistically homogeneous. 

H1: Data are not homogeneous. 

 

The null and alternate hypothesis were tested at 90%, 95% and 99% confidence interval (i.e. 0.1, 0.05 

and 0.01) df as shown in Figure 3. 

 

 
Figure 3: Homogeneity test of compresses temperature difference data 

 

From Figure 3, the compressed temperature difference data fluctuated around the zero-center line of 

the residual mass curve, an indication that the data were statistically homogeneous. The homogeneity 

statistics was used to check the strength of the null hypothesis over the alternate hypothesis. Based on 

the result obtained, the null hypothesis (H0) was accepted, and it was concluded that the compressed 

temperature difference data were statistically homogeneous at 90%, 95% and 99% confidence 

interval. 

 

The hypothesis of homogeneity test of power generation data is:  

 

H0: Data are statistically homogeneous. 

H1: Data are not homogeneous. 
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The null and alternate hypothesis were tested at 90%, 95% and 99% confidence interval (i.e. 0.1, 0.05 

and 0.01) df as shown in Figure 4. 

 

 
Figure 4: Homogeneity test of power generation data 

 

Figure 4 showed that the power generation data fluctuated around the zero-center line of the residual 

mass curve, an indication that the data are statistically homogeneous. The homogeneity statistics was 

used to check the strength of the null hypothesis over the alternate hypothesis. Based on the result 

obtained, the null hypothesis (H0) was accepted, and it was concluded that the power generation data 

were statistically homogeneous at 90%, 95% and 99% confidence interval. 

  

3.2. Normality test results 

The normality test was done for the one independent and three dependent variables using the JB test 

for normality statistical software. Figure 5 shows the results of the normality test of gas pressure. 

 

 
Figure 5: Normality test of gas pressure data 

 

A skewness coefficient of 4.598753 and kurtosis value of 46.80656 shown in Figure 5 indicate that 

the gas pressure data is not normally distributed. For normality, the skewness coefficient should not 

be greater than 1 and the kurtosis should not be greater than 3 (Bai and Ng, 2005). JB value of 

93752.18 and a probability (p-value) of 0.00% observed in Figure 5 indicates that the gas pressure 

data is not normally distributed. JB value >10 means that the null hypothesis is rejected at that level 

of significance (Das and Imon, 2016), meaning, the data did not come from a normal distribution. 

Since the JB test value is greater than 10 and the (p-value) is less than the 5% significant value, the 

null hypothesis was rejected and it was concluded that the data is not from a normal distribution. 

 

The normality test result of ambient temperature is shown in Figure 6. 

 

 
Figure 6: Normality test of ambient temperature data 

 

A skewness coefficient of 21.78216 and a kurtosis value of 597.0845 observed in Figure 6 indicate 

that the ambient temperature data is not normally distributed. JB value of 16603284 and a probability 
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(p-value) of 0.00% observed in Figure 6 indicates that the ambient temperature data is not normally 

distributed. Since the JB test value is greater than 10 and the p-value is less than the 5% significant 

value, the null hypothesis was rejected and it was concluded that the data is not from a normal 

distribution. 

 

Figure 7 shows result of the normality test of compressed temperature difference. 

 

 
Figure 7: Normality test of compressed temperature difference data 

 

A skewness coefficient of -5.370987 shows that the data is negatively skewed an indication that the 

data is not normally distributed. Kurtosis value of 59.20195 observed in Figure 7 is also an indication 

that the data is not from a normal population distribution. JB value of 153198.2 and a probability (p-

value) of 0.00% also indicated that the compressed temperature difference data was not normally 

distributed. Since the JB test value is greater than 10 and the p-value is less than the 5% significant 

value, the null hypothesis was rejected and it was concluded that the data is not from a normal 

distribution. 

 

Figure 8 shows result of the normality test of power generation data. 

 

 
Figure 8: Normality test of power generation data 

 

A skewness coefficient of -0.243075 shows that the data is negatively skewed an indication that the 

data is not normally distributed. Kurtosis value of 5.118130 observed in Figure 8 is also an indication 

that the data is not from a normal population distribution. JB value of 220.9885 and a probability (p-

value) of 0.00% as observed in Figure 8 also indicates that the power generation data is not normally 

distributed Since the JB test value is greater than 10 and the p-value is less than the 5% significant 

value, the null hypothesis was rejected and it was concluded that the data is not from a normal 

distribution. 

 

3.3. Results of the Diagnostic Analysis of Data 

The diagnostic statistical analyses done in this study include: Heteroskedasticity test using Breusch-

Pagan Godfrey; Serial Correlation test using Breusch Godfrey; and Variance Inflation Factor (VIF). 

 

3.3.1. Heteroskedasticity test 

Result of heteroskedasticity test using Breusch-Pagan Godfrey method showed that (i) the calculated 

(p-value) based on the F-statistics is 0.0000; (ii) the calculated p-value based on Lagrange multiplier 

(LM) is 0.0000. Since the computed p-value based on F-statistics and Lagrange multiplier is less than 

0.05 (P < 0.05), we rejected the null hypothesis of homoskedasticity and conclude that there is no 

heteroskedasticity in the data (Astivia and Zumbo, 2019). 

 

3.3.2. Serial correlation test result 

The result of serial correlation LM test using Breusch Godfrey method indicated that (i) the calculated 

p-value based on the F-statistics is 0.0000; and (ii) the calculated p-value based on LM is 0.0000. 
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Since the computed p-value based on F-statistics and LM is less than 0.05 (P < 0.05), we rejected the 

null hypothesis of serial correlation and concluded that there is the presence of serial correlation in the 

data. 

 

3.3.3. The Variance Inflation Factor (VIF) result 

The result of the calculated VIF for the selected variables was observed to be less than 10. Since the 

computed variance inflation factors (centred VIF) for the selected independent variables were less 

than 10, it was concluded that the variables were well correlated with the dependent variable, hence 

absence of multicollinearity (Montgomery, 2005). The Output of regression analysis is presented in 

Table 10. Finally, the reliance of the dependent variable on the selected independent variables was 

evaluated using the coded least square regression equation as shown in Eqn. (5). 

 

(𝑀 𝑤𝑎𝑡𝑡𝑠⁄ )𝐶 𝐹𝑃𝐺2 𝐼𝑁𝐿𝐸𝑇 𝐶𝑇𝐷         (5) 

Table 10: Output of regression analysis 

 
 

From the result of Table 10, with a regression p-value of 0.0013, it was concluded that the regression 

analysis was significant at 0.05 df. The Independent variables, namely; (INLET and CTD) were 

observed to have a very strong influence on the dependent variable when compared to FPG2. The 

poor regression terms such as coefficient of determination and adjusted coefficient of determination 

was apparently due to the presence of serial correlation in the used data. The overall regression 

equation was then generated as: 

(𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) = 21.61506 +  0.197497(𝐹𝐺𝑃2) − 0.247932(𝐼𝑁𝐿𝐸𝑇) +  0.194514(𝐶𝑇𝐷)(6) 

3.4. Model development 

Table 11 shows the estimated regression parameters of eqn. (2).  

 

Table 11: Estimated Regression Parameters 
S/N Regression parameters Estimated values 

1 Coefficient of determination (R- Squared) 0.137577 

2 Adjusted Coefficient of determination (Adjusted R-Squared) 0.135265 

3 Sum of Error of Regression (S.E. of Regression) 9.922863 

4 Residual Sum of Square 110180.3 

 

From Table 11, the estimated values of regression parameters were very poor. An indication that the 

exact relationship between the dependent variable (power generation) and the selected independent 

variables (gas pressure, ambient temperature and compressed temperature difference) cannot be 

determined using linear regression model. Hence, non-linear model equations method (power 

function; quantile regression; robust regression; inverse function based on gamma distribution; and 

log function based on negative binomial distribution) were developed to determine the exact 

relationship between the dependent variable and the selected independent variables. Statistical 

software was used to develop the model equations. 
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3.4.1. Power function model 

The model equation developed using the power function model is shown in Table 12.  

 

Table 12: Result of power function model 

 
 

Results of the power function method as shown in Table 2 using ANOVA showed that the power 

function model is significant at 0.05df. Using the unstandardized coefficients, the power function 

equation was developed as: 

(𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) = 22.22 × (𝐹𝑃𝐺2)0.107(𝐼𝑁𝐿𝐸𝑇)−0.339 (𝐶𝑇𝐷)0.383     (7) 

3.4.2. Quantile regression method 

The ANOVA result shown in Table 12 showed that the quantile regression model is significant at 

0.05df. Using the unstandardized coefficients, the quantile regression equation is: 

 
(𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) = −106.4318 + 0.096263(𝐹𝑃𝐺2) − 1.560389(𝐼𝑁𝐿𝐸𝑇) + 0.703719(𝐶𝑇𝐷) (8) 

3.4.3. Robust regression method 

Table 12 shows the ANOVA results which indicated that the robust regression model is significant at 

0.05df. Using the unstandardized coefficients, the robust regression equation was developed as: 

(𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) =  −117.8962 + 0.123039(𝐹𝑃𝐺2) − 1.776864(𝐼𝑁𝐿𝐸𝑇) + 0.752693(𝐶𝑇𝐷) (9) 

3.4.4. Inverse function method 

From the ANOVA results in Table 12, the inverse function model is significant at 0.05df. Using the 

unstandardized coefficients, the inverse function equation developed is: 

 

𝑍 = 0.019253 − 2.48𝐸(−05)(𝐹𝑃𝐺2) + 3.86𝐸(−05)(𝐼𝑁𝐿𝐸𝑇) − 2.66𝐸(−05)(𝐶𝑇𝐷)    (10) 

(𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) =  1
𝑍⁄            (11) 

3.4.5. Log function method 

The ANOVA analysis in Table 12 indicated that the log function model is significant at 0.05df. Using 

the unstandardized coefficients, the log function equation was developed as: 

 

𝑍 = 3.963366 + 0.002036(𝐹𝑃𝐺2) − 0.002265(𝐼𝑁𝐿𝐸𝑇) + 0.001733(𝐶𝑇𝐷)   (12) 

(𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) = 𝐸𝑥𝑝 (𝑍)         (13) 

The summary of the developed mathematical models are shown in Table 13, and can be used to 

predict the power generation. 
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Table 13: Summary of developed mathematical equations (models) 
S/N Method Developed mathematical equation 

1 Linear Regression (𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) = 21.61506 +  0.197497(𝐹𝐺𝑃2) − 0.247932(𝐼𝑁𝐿𝐸𝑇)
+  0.194514(𝐶𝑇𝐷) 

2 Robust Regression (𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) =  −117.8962 + 0.123039(𝐹𝑃𝐺2) − 1.776864(𝐼𝑁𝐿𝐸𝑇)
+ 0.752693(𝐶𝑇𝐷) 

3 Quantile Regression (𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) = −106.4318 + 0.096263(𝐹𝑃𝐺2) − 1.560389(𝐼𝑁𝐿𝐸𝑇)
+ 0.703719(𝐶𝑇𝐷) 

4 Power Function (𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) = 22.22 × (𝐹𝑃𝐺2)0.107(𝐼𝑁𝐿𝐸𝑇)−0.339 (𝐶𝑇𝐷)0.383   

5 Inverse Function 𝑍 = 0.019253 − 2.48𝐸(−05)(𝐹𝑃𝐺2) + 3.86𝐸(−05)(𝐼𝑁𝐿𝐸𝑇) − 2.66𝐸(−05)(𝐶𝑇𝐷) 

    (𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) =  1
𝑍⁄         

6 Log Function 𝑍 = 3.963366 + 0.002036(𝐹𝑃𝐺2) − 0.002265(𝐼𝑁𝐿𝐸𝑇) + 0.001733(𝐶𝑇𝐷) 

       (𝑀 𝑤𝑎𝑡𝑡𝑠⁄ ) = 𝐸𝑥𝑝 (𝑍)   

 

4.0. Conclusions 

 

The relationship between the output of gas power plant and the quantitative variables were not 

linearly related, but could be best described by a non-linear regression model. The study provided a 

veritable and laudable process to systematically identify factors that are capable of influencing the 

generation of power in gas power plants. One dependent (power generation) and three independent 

variables (Gas Pressure, Ambient Temperature, Compressed Temperature) were used for this analysis. 

The three critical numeric variables were observed to play a key role in assessing the relationship 

between input and output parameters in gas power plant. The study also showed that the ambient 

temperature and compressed temperature difference had very strong influence on the dependent 

variable when compared to the gas pressure variable.  
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